如图,在四棱台ABCD-A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.(1)求证:B1B∥平面D1AC;(2)求证:

题目简介

如图,在四棱台ABCD-A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.(1)求证:B1B∥平面D1AC;(2)求证:

题目详情

如图,在四棱台ABCD-A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.
(1)求证:B1B平面D1AC;
(2)求证:平面D1AC⊥平面B1BDD1360优课网
题型:解答题难度:中档来源:聊城一模

答案

证明:(1)设AC∩BD=E,连接D1E,
∵平面ABCD平面A1B1C1D1.
∴B1D1BE,∵B1D1=BE=
2

∴四边形B1D1EB是平行四边形,
所以B1BD1E.
又因为B1B⊄平面D1AC,D1E⊂平面D1AC,
所以B1B平面D1AC
(2)证明:侧棱DD1⊥平面ABCD,AC⊂平面ABCD,
∴AC⊥DD1.
∵下底ABCD是正方形,AC⊥BD.
∵DD1与DB是平面B1BDD1内的两条相交直线,
∴AC⊥平面B1BDD1
∵AC⊂平面D1AC,∴平面D1AC⊥平面B1BDD1.

更多内容推荐