如图:在正方体ABCD-A1B1C1D1中,O、O1分别是AC、A1C1的中点,E是线段D1O上一点,且D1E=λEO(λ≠0).(Ⅰ)求证:λ取不等于0的任何值时都有BO1∥平面ACE;(Ⅱ)λ=2

题目简介

如图:在正方体ABCD-A1B1C1D1中,O、O1分别是AC、A1C1的中点,E是线段D1O上一点,且D1E=λEO(λ≠0).(Ⅰ)求证:λ取不等于0的任何值时都有BO1∥平面ACE;(Ⅱ)λ=2

题目详情

如图:在正方体ABCD-A1B1C1D1中,O、O1分别是AC、A1C1的中点,E是线段D1O上一点,且D1E=λEO(λ≠0).
(Ⅰ)求证:λ取不等于0的任何值时都有BO1平面ACE;
(Ⅱ)λ=2时,证明:平面CDE⊥平面CD1O.360优课网
题型:解答题难度:中档来源:不详

答案


360优课网
证明:(I)由题意,O、O1分别是AC、A1C1的中点,
∴四边形D1O1BO是平行四边形,
∴BO1OD1
∴BO1OE
∵OE⊂平面ACE,BO1⊄平面ACE,
∴λ取不等于0的任何值时都有BO1平面ACE;
(Ⅱ)
360优课网
不妨设正方体的棱长为1,以DA,DC,DD1为x,y,z轴建立空间直角坐标系,
则可得D(0,0,0),B1(1,1,1),O(class="stub"1
2
,class="stub"1
2
,0)
,C(0,1,0),D1(0,0,1)
DB1
=(1,1,1),
CD1
=(0,-1,1),
OC
=(-class="stub"1
2
,class="stub"1
2
,0)

DB1
CD1
=0
DB1
OC
=0
∴DB1⊥CD1,DB1⊥OC
∴平面CD1O的一个法向量为
DB1
=(1,1,1),
∵λ=2,∴E(class="stub"1
3
,class="stub"1
3
,class="stub"1
3

又设平面CDE的法向量为
n
=(x,y,z)
DC
=(0,1,0),
DE
=(class="stub"1
3
,class="stub"1
3
,class="stub"1
3

y=0
class="stub"1
3
(x+y+z)=0

∴可取
n
=(1,0,-1)
DB1
n
=0

∴平面CDE⊥平面CD1O.

更多内容推荐