如图,△MBC中,∠B=90°,∠C=60°,MB=,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为A.B.C.2D.3-九年级数学

题目简介

如图,△MBC中,∠B=90°,∠C=60°,MB=,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为A.B.C.2D.3-九年级数学

题目详情

如图,△MBC中,∠B=90°,∠C=60°,MB=,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为
A.B.C.2D.3
题型:单选题难度:偏易来源:不详

答案

C
分析:在直角三角形BCM中,根据60°的正切函数以及MB的长度,求出BC的长,然后根据AB为直径且AB与BC垂直,得到BC为圆O的切线,又因为CD也为圆O的切线,根据切线长定理得到切线长CD与BC相等,即可得到CD的长.
解答:解:在直角△BCM中,
tan60°==
得到BC==2,
∵AB为圆O的直径,且AB⊥BC,
∴BC为圆O的切线,又CD也为圆O的切线,
∴CD=BC=2.
故选C

更多内容推荐