已知函数f(x)=a•3x+a-23x+1.(a∈R)(1)是否存在实数a使函数f(x)为奇函数?证明你的结论;(2)用单调性定义证明:不论a取任何实数,函数f(x)在其定义域上都是增函数;(3)若函

题目简介

已知函数f(x)=a•3x+a-23x+1.(a∈R)(1)是否存在实数a使函数f(x)为奇函数?证明你的结论;(2)用单调性定义证明:不论a取任何实数,函数f(x)在其定义域上都是增函数;(3)若函

题目详情

已知函数f(x)=
a•3x+a-2
3x+1
.(a∈R)
(1)是否存在实数a使函数f(x)为奇函数?证明你的结论;
(2)用单调性定义证明:不论a取任何实数,函数f(x)在其定义域上都是增函数;
(3)若函数f(x)为奇函数,解不等式f(3m2-m+1)+f(2m-3)<0.
题型:解答题难度:中档来源:不详

答案

(1)∵3x>0
3x+1≠0函数f(x)的定义域为 R即(-∞,+∞)…(1分)
假设存在实数a使函数f(x)为奇函数,
由f(0)=0得class="stub"2a-2
3x+1
=0
解得a=1…(2分),
f(x)=
3x-1
3x+1
f(-x)=
3-x-1
3-x+1
=
class="stub"1
3x
-1
class="stub"1
3x
+1
=
1-3x
3x+1
=-
3x-1
3x+1
=-f(x)

∴当a=1时,函数f(x)为奇函数…(4分)
(2)证明:任取x1,x2∈R,且x1<x2
f(x)=a-class="stub"2
3x+1

f(x1)-f(x2)=a-class="stub"2
3x1+1
-
(a-class="stub"2
3x2+1
)

=class="stub"2
3x2+1
-
class="stub"2
3x1+1

=
2(3x1+1)-2(3x2+1)
(3x1+1)(3x2+1)

=
2(3x1-3x2)
(3x1+1)(3x2+1)
…(7分)
∵x1<x2,
3x13x2
3x1-3x2<0
又∵3x1+1>0,3x2+1>0
f(x1)-f(x2)<0即f(x1)<f(x2)
∴不论a取何值,函数f(x)在其定义域上都是增函数.…(9分)
(3)由f(3m2-m+1)+f(2m-3)<0得f(3m2-m+1)<-f(2m-3)
∵函数f(x)为奇函数
∴-f(2m-3)=f(3-2m)
∴f(3m2-m+1)<f(3-2m)
由(2)已证得函数f(x)在R上是增函数
∴f(3m2-m+1)<f(3-2m)⇔3m2-m+1<3-2m
∴3m2+m-2<0
∴(3m-2)(m+1)<0
-1<m<class="stub"2
3

不等式f(3m2-m+1)+f(2m-3)<0的解集为{m|-1<m<class="stub"2
3
}
.…(14分)

更多内容推荐