已知f(x)=x,g(x)=x+a(a>0)(1)当a=4时,求|f(x)-ag(x)f(x)|的最小值(2)当1≤x≤4时,不等式|f(x)-ag(x)f(x)|>1恒成立,求a的取值范围.-数学

题目简介

已知f(x)=x,g(x)=x+a(a>0)(1)当a=4时,求|f(x)-ag(x)f(x)|的最小值(2)当1≤x≤4时,不等式|f(x)-ag(x)f(x)|>1恒成立,求a的取值范围.-数学

题目详情

已知f(x)=
x
,g(x)=x+a  (a>0)
(1)当a=4时,求|
f(x)-ag(x)
f(x)
|
的最小值
(2)当1≤x≤4时,不等式|
f(x)-ag(x)
f(x)
|
>1恒成立,求a的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)当a=4时,|
f(x)-ag(x)
f(x)
|=|
x
-4x -16
x
|=|1-(4
x
+class="stub"16
x
) |

x
>0
,∴4
x
+class="stub"16
x
≥ 16
x
=class="stub"4
x
,即x=4时
,取“=”号
|
f(x)-ag(x)
f(x)
|
的最小值为15;
(2)|
f(x)-ag(x)
f(x)
|=|
x
-ax -a2
x
|=|1-(a
x
+
a2
x
) |
(1≤x≤4)
t=
x
,则问题等价于|1-(at+
a2
t
) |>1
,t∈[1,2]时恒成立,
at+
a2
t
<0
at+
a2
t
>2
,t∈[1,2]时恒成立,
h(t)=a(t+class="stub"a
t
)
,则只需h(t)在[1,2]上的最小值大于2或最大值小于0即可,
由函数 y=x+class="stub"a
x
的单调性知
a
>2
h(t)min=h(2)>2
1≤
a
≤2
h(t)min=h(
a
)>2
0<
a
<1
h(t)min=h(1)>2

a
>2
h(t)max=h(1)<0
1≤
a
≤2
h(t)max=h(1)<0
h(2)<0
0<
a
<1
h(t)max=h(2)<0
或a<0
解得a>1或a<0

更多内容推荐