函数f(x)=ax2+(a-2b)x+a-1是定义在(-a,0)∪(0,2a-2)上的偶函数,则f(a2+b25)=()A.1B.3C.52D.不存在-数学

题目简介

函数f(x)=ax2+(a-2b)x+a-1是定义在(-a,0)∪(0,2a-2)上的偶函数,则f(a2+b25)=()A.1B.3C.52D.不存在-数学

题目详情

函数f(x)=ax2+(a-2b)x+a-1是定义在(-a,0)∪(0,2a-2)上的偶函数,则f(
a2+b2
5
)
=(  )
A.1B.3C.
5
2
D.不存在
题型:单选题难度:中档来源:不详

答案

由偶函数的定义域关于原点对称可知,2a-2=a
∴a=2,又函数f(x)=2x2+(2-2b)x+1的定义域为(-2,0)∪(0,2)的偶函数
∴函数的对称轴x=1-b=0
∴b=1
∴f(x)=2x2+1
∴f(
a2+b2
5
)
=f(1)=3
故选B

更多内容推荐