已知函数f(x)=Asin(2x+φ)(A>0,|φ|<π2),且f(5π6)=-A.(I)求φ的值;(Ⅱ)若f(α)=35A,f(β+π12)=513A且π6<α<π3,0<β<π4,求cos(2α

题目简介

已知函数f(x)=Asin(2x+φ)(A>0,|φ|<π2),且f(5π6)=-A.(I)求φ的值;(Ⅱ)若f(α)=35A,f(β+π12)=513A且π6<α<π3,0<β<π4,求cos(2α

题目详情

已知函数f(x)=Asin(2x+φ)(A>0,|φ|<
π
2
),且f(
6
)=-A.
(I)求φ的值;
(Ⅱ)若f(α)=
3
5
A
,f(β+
π
12
)=
5
13
A
π
6
<α<
π
3
,0<β<
π
4
,求cos(2α+2β-
π
6
)的值.
题型:解答题难度:中档来源:成都二模

答案

(I)由题意,得f(class="stub"5π
6
)=-A⇒Asin(2×class="stub"5π
6
+φ)=-A,
∴sin(class="stub"5π
3
+φ)=-1,
class="stub"5π
3
+φ=2kπ+class="stub"3π
2
,k∈Z
∵|φ|<class="stub"π
2

∴φ=-class="stub"π
6

(Ⅱ)由(I)可知,函数f(x)=Asin(2x-class="stub"π
6
),
∵f(α)=class="stub"3
5
A
∴Asin(2α-class="stub"π
6
)=class="stub"3
5
A

∴sin(2α-class="stub"π
6
)=class="stub"3
5

class="stub"π
6
<α<class="stub"π
3

class="stub"π
6
<2α-class="stub"π
6
<class="stub"π
3

∴cos(2α-class="stub"π
6
)=class="stub"4
5

又f(β+class="stub"π
12
)=class="stub"5
13
A,
∴Asin(2β+class="stub"π
6
-class="stub"π
6
)=class="stub"5
13
A

∴sin2β=class="stub"12
13

0<β<class="stub"π
4

0<2β<class="stub"π
2

∴cos2β=class="stub"12
13

∴cos(2α+2β-class="stub"π
6
)=cos(2α-class="stub"π
6
)cos2β-sin(2α-class="stub"π
6
)sin2β
=class="stub"4
5
×class="stub"12
13
-class="stub"3
5
×class="stub"5
13

=class="stub"33
65

更多内容推荐