已知函数f(x)=23a•sinx•cosx•cos2x-6cos22x+3,且f(π24)=0.(Ⅰ)求函数f(x)的周期T和单调递增区间;(Ⅱ)若f(θ)=-3,且θ∈(-5π24,π24),求θ

题目简介

已知函数f(x)=23a•sinx•cosx•cos2x-6cos22x+3,且f(π24)=0.(Ⅰ)求函数f(x)的周期T和单调递增区间;(Ⅱ)若f(θ)=-3,且θ∈(-5π24,π24),求θ

题目详情

已知函数f(x)=2
3
a•sinx•cosx•cos2x-6cos22x+3
,且f(
π
24
)=0

(Ⅰ)求函数f(x)的周期T和单调递增区间;
(Ⅱ)若f(θ)=-3,且θ∈(-
24
π
24
)
,求θ的值.
题型:解答题难度:中档来源:不详

答案

解.(Ⅰ)f(x)=2
3
a•sinx•cosx•cos2x-6cos22x+3

=
3
a
2
sin4x-3cos4x
.又f(class="stub"π
24
)=0
,得a=6.
f(x)=3
3
sin4x-3cos4x=6sin(4x-class="stub"π
6
)

∴函数f(x)的周期T=class="stub"π
2

2kπ-class="stub"π
2
≤4x-class="stub"π
6
≤2kπ+class="stub"π
2
(k∈Z),
得函数单调递增区间为[-class="stub"π
12
+class="stub"kπ
2
,class="stub"π
6
+class="stub"kπ
2
]
,k∈Z;
(Ⅱ)依题意得sin(4θ-class="stub"π
6
)=-class="stub"1
2

θ∈(-class="stub"5π
24
,class="stub"π
24
)
,∴-π<4θ-class="stub"π
6
<0

4θ-class="stub"π
6
=-class="stub"π
6
-class="stub"5π
6
.解得θ=0或-class="stub"π
6

更多内容推荐