若(1-1x2)n(n∈N,n>1)的展开式中x-4的系数为an,则1a2+1a3+…+1an=______.-数学

题目简介

若(1-1x2)n(n∈N,n>1)的展开式中x-4的系数为an,则1a2+1a3+…+1an=______.-数学

题目详情

(1-
1
x2
)n(n∈N,n>1)
的展开式中x-4的系数为an,则
1
a2
+
1
a3
+…+
1
an
=______.
题型:填空题难度:中档来源:不详

答案

由于(1-class="stub"1
x2
)n(n∈N,n>1)
的展开式的通项公式为Tr+1=
Crn
•(-1)r•x-2r,令-2r=-4,可得 r=2,
中x-4的系数为an =(-1)2
2n
=
n(n-1)
2

class="stub"1
an
=class="stub"2
n(n-1)
=2[class="stub"1
n-1
-class="stub"1
n
].
class="stub"1
a2
+class="stub"1
a3
+…+class="stub"1
an
=2[1-class="stub"1
2
+class="stub"1
2
-class="stub"1
3
+class="stub"1
3
-class="stub"1
4
+…+class="stub"1
n-1
-class="stub"1
n
]=2(1-class="stub"1
n
),
故答案为 2(1-class="stub"1
n
).

更多内容推荐