已知函数y=f(x)是定义在[a,b]上的增函数,其中a,b∈R且0<b<-a,已知f(x)=0无解,设函数F(x)=f2(x)+f2(-x),则对于F(x)有以下四个说法:①定义域是[-b,b];②

题目简介

已知函数y=f(x)是定义在[a,b]上的增函数,其中a,b∈R且0<b<-a,已知f(x)=0无解,设函数F(x)=f2(x)+f2(-x),则对于F(x)有以下四个说法:①定义域是[-b,b];②

题目详情

已知函数y=f(x)是定义在[a,b]上的增函数,其中a,b∈R且0<b<-a,已知f(x)=0无解,设函数
F(x)=f2(x)+f2(-x),则对于F(x)有以下四个说法:
①定义域是[-b,b];②是偶函数;③最小值是0;④在定义域内单调递增,
其中正确的有(    )。(填入你认为正确的所有序号)
题型:填空题难度:中档来源:0103 月考题

答案

①②

更多内容推荐