已知三条直线l1:mx-y+m=0,l2:x+my-m(m+1)=0,l3:(m+1)x-y+(m+1)=0,它们围成△ABC.(I)求证:不论m取何值时,△ABC中总有一个顶点为定点;(II)当m取

题目简介

已知三条直线l1:mx-y+m=0,l2:x+my-m(m+1)=0,l3:(m+1)x-y+(m+1)=0,它们围成△ABC.(I)求证:不论m取何值时,△ABC中总有一个顶点为定点;(II)当m取

题目详情

已知三条直线l1:mx-y+m=0,l2:x+my-m(m+1)=0,l3:(m+1)x-y+(m+1)=0,它们围成△ABC.
(I)求证:不论m取何值时,△ABC中总有一个顶点为定点;
(II)当m取何值时,△ABC的面积取最大值、最小值?并求出最值.
题型:解答题难度:中档来源:不详

答案

(1)根据题意得 l1,l3交于A(-1,0)l2,l3交于B(0,m+1)
∴不论m取何值时,△ABC中总有一个顶点为定点(-1,0)
(2)从条件中可以看出l1、l2垂直
∴角C为直角,
∴S=class="stub"1
2
|AC|•|BC|
|BC|等于点(0,m+1)到l1的距离d=
|-m-1+m|
m2+1
=class="stub"1
m2+1

|AC|等于(-1,0)到l2的距离d=
m2+m+1
m2+ 1

S=class="stub"1
2
×
m2+m+1
m2+1
=class="stub"1
2
[1+class="stub"1
m+class="stub"1
m
]
当m>0时,class="stub"1
m+class="stub"1
m
有最大值class="stub"1
2

同理,当m<0时,class="stub"1
m+class="stub"1
m
有最小-class="stub"1
2

所以m=1时S取最大值为class="stub"3
4
m=-1时S取最小值class="stub"1
4

更多内容推荐