已知复数z1满足:|z1|=1+3i-z1.复数z2满足:z2•(1-i)+(3-2i)=4+i.(1)求复数z1,z2;(2)在复平面内,O为坐标原点,记复数z1,z2对应的点分别为A,B.求△OA

题目简介

已知复数z1满足:|z1|=1+3i-z1.复数z2满足:z2•(1-i)+(3-2i)=4+i.(1)求复数z1,z2;(2)在复平面内,O为坐标原点,记复数z1,z2对应的点分别为A,B.求△OA

题目详情

已知复数z1满足:|z1|=1+3i-z1.复数z2满足:z2•(1-i)+(3-2i)=4+i.
(1)求复数z1,z2
(2)在复平面内,O为坐标原点,记复数z1,z2对应的点分别为A,B.求△OAB的面积.
题型:解答题难度:中档来源:不详

答案

(1)设z1=x+yi(x,y∈R),
由|z1|=1+3i-z1,得
x2+y2
=1+3i-(x+yi)
=1-x+(3-y)i,
1-x=
x2+y2
3-y=0
,解得
x=-4
y=3

∴z1=-4+3i.
而z2•(1-i)=1+3i,
z2=class="stub"1+3i
1-i
=
(1+3i)(1+i)
(1-i)(1+i)
=class="stub"-2+4i
2
=-1+2i,
(2)由(1)知,
OA
=(-4,3)
OB
=(-1,2)
,∴|
OA|
=
(-4)2+32
=5
|
OB
|=
(-1)2+22
=
5

OA
OB
=|
OA
| |
OB
|cos∠AOB
,得(-4)×(-1)+3×2=5
5
cos∠AOB

解得cos∠AOB=class="stub"2
5
,∴sin∠AOB=class="stub"1
5

∴△OAB的面积S=class="stub"1
2
×5×
5
×class="stub"1
5
=class="stub"5
2

更多内容推荐