已知f(x)是R上的奇函数,对x∈R都有f(x+4)=f(x)+f(2)成立,若f(-1)=-2,则f(2013)等于()A.2B.-2C.-1D.2013-数学

题目简介

已知f(x)是R上的奇函数,对x∈R都有f(x+4)=f(x)+f(2)成立,若f(-1)=-2,则f(2013)等于()A.2B.-2C.-1D.2013-数学

题目详情

已知f(x)是R上的奇函数,对x∈R都有f(x+4)=f(x)+f(2)成立,若f(-1)=-2,则f(2013)等于(  )
A.2B.-2C.-1D.2013
题型:单选题难度:偏易来源:成都模拟

答案

由f(x+4)=f(x)+f(2),取x=-2,得:f(-2+4)=f(-2)+f(2),即f(-2)=0,所以f(2)=0,
则f(x+4)=f(x)+f(2)=f(x),
所以f(x)是以4为周期的周期函数,
所以f(2013)=f(4×503+1)=f(1)=-f(-1)=-(-2)=2.
故选A.

更多内容推荐