设函数f(x)=ax3-2bx2+cx+4d,(a,b,c,d∈R)的图象关于原点对称,且x=1时,f(x)取极小值-13.(Ⅰ)求a,b,c,d的值;(Ⅱ)当x∈[-1,1]时,图象上是否存在两点,

题目简介

设函数f(x)=ax3-2bx2+cx+4d,(a,b,c,d∈R)的图象关于原点对称,且x=1时,f(x)取极小值-13.(Ⅰ)求a,b,c,d的值;(Ⅱ)当x∈[-1,1]时,图象上是否存在两点,

题目详情

设函数f(x)=ax3-2bx2+cx+4d,(a,b,c,d∈R)的图象关于原点对称,且x=1时,f(x)取极小值-
1
3

(Ⅰ)求a,b,c,d的值;
(Ⅱ)当x∈[-1,1]时,图象上是否存在两点,使两点处的切线互相垂直?试证明你的结论;
(Ⅲ)若x1,x2∈[-1,1],求证:|f(x1)-f(x2)|≤
4
3
题型:解答题难度:中档来源:不详

答案

(I)因为图象关于原点对称,所以f(x)为奇函数,所以b=0,d=0
所以f(x)=ax3+cx,因此f'(x)=3ax2+c
由题意得
f(1)=a+c=-class="stub"1
3
f′(1)=3a+c=0

解得a=class="stub"1
6
,c=-class="stub"1
2

(II)不存在.
证明:假设存在x1,x2,则f'(x1)•f'(x2)=-1
所以(x12-1)(x22-1)=-4
因为x1,x2∈[-1,1]所以x12-1,x22-1∈[-1,0]
因此(x12-1)(x22-1)≠-4
所以不存在.
(III)证明:f′(x)=class="stub"1
2
x2-class="stub"1
2

f′(x)=class="stub"1
2
x2-class="stub"1
2
=0得x=±1fmin(x)=f(1)=-class="stub"1
3
fmax(x)=f(-1)=class="stub"1
3

所以|f(x1)-f(x2)|≤fmax(x)-fmin(x)=f(-1)-f(1)=class="stub"2
3
<class="stub"4
3

更多内容推荐