函数f(x)=a-x2|x+1|-1为奇函数的充要条件是()A.0<a<1B.0<a≤1C.a>1D.a≥1-数学

题目简介

函数f(x)=a-x2|x+1|-1为奇函数的充要条件是()A.0<a<1B.0<a≤1C.a>1D.a≥1-数学

题目详情

函数f(x)=
a-x2
|x+1|-1
为奇函数的充要条件是(  )
A.0<a<1B.0<a≤1C.a>1D.a≥1
题型:单选题难度:偏易来源:红桥区一模

答案

(先看必要性)∵函数f(x)=
a-x2
|x+1|-1
为奇函数
∴f(-x)=-f(x)
∴|x+1|-1=x,即x≥-1
而奇函数的定义域关于原点对称
∴函数f(x)的定义域为[-a,0)∪(0,a]⊆[-1,0)∪(0,1]
∴0<a≤1
(再看充分性)∵0<a≤1
而a-x2≥0
∴x2≤a≤1
∴-1≤x≤1且x≠0
∴|x+1|-1=x∴f(x)=
a-x2
x

∴f(x)为奇函数
故选B

更多内容推荐