如果函数f(x)=(x+a)3对任意x∈R都有f(1+x)=-f(1-x),试求f(2)+f(-2)的值.-数学

题目简介

如果函数f(x)=(x+a)3对任意x∈R都有f(1+x)=-f(1-x),试求f(2)+f(-2)的值.-数学

题目详情

如果函数f(x)=(x+a)3对任意x∈R都有f(1+x)=-f(1-x),试求f(2)+f(-2)的值.
题型:解答题难度:中档来源:不详

答案

∵对任意x∈R,总有f(1+x)=-f(1-x),
∴当x=0时,有f(1+0)=-f(1-0),
即f(1)=-f(1).∴f(1)=0.
又∵f(x)=(x+a)3,∴f(1)=(1+a)3.
故有(1+a)3=0,解得a=-1.
∴f(x)=(x-1)3.
∴f(2)+f(-2)=(2-1)3+(-2-1)3=13+(-3)3=-26.

更多内容推荐