已知函数f(x)=(1+x)e-2x,g(x)=ax+x32+1+2xcosx,当x∈[0,1]时,(I)求证:1-x≤f(x)≤11+x;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.-数

题目简介

已知函数f(x)=(1+x)e-2x,g(x)=ax+x32+1+2xcosx,当x∈[0,1]时,(I)求证:1-x≤f(x)≤11+x;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.-数

题目详情

已知函数f(x)=(1+x)e-2x,g(x)=ax+
x3
2
+1+2xcosx,当x∈[0,1]时,
(I)求证:1-x≤f(x)≤
1
1+x

(II)若f(x)≥g(x)恒成立,求实数a的取值范围.
题型:解答题难度:中档来源:辽宁

答案

(I)证明:①当x∈[0,1)时,(1+x)e-2x≥1-x⇔(1+x)e-x≥(1-x)ex,
令h(x)=(1+x)e-x-(1-x)ex,则h′(x)=x(ex-e-x).
当x∈[0,1)时,h′(x)≥0,
∴h(x)在[0,1)上是增函数,
∴h(x)≥h(0)=0,即f(x)≥1-x.
②当x∈[0,1)时,f(x)≤class="stub"1
1+x
⇔ex≥1+x,令u(x)=ex-1-x,则u′(x)=ex-1.
当x∈[0,1)时,u′(x)≥0,
∴u(x)在[0,1)单调递增,∴u(x)≥u(0)=0,
∴f(x)≤class="stub"1
1+x

综上可知:1-x≤f(x)≤class="stub"1
1+x

(II)设G(x)=f(x)-g(x)=(1+x)e-2x-(ax+class="stub"1
2
x3+1+2xcosx)

1-x-ax-1-class="stub"1
2
x3-2xcosx
=-x(a+1+
x2
2
+2cosx)

令H(x)=
x2
2
+2cosx
,则H′(x)=x-2sinx,
令K(x)=x-2sinx,则K′(x)=1-2cosx.
当x∈[0,1)时,K′(x)<0,
可得H′(x)是[0,1)上的减函数,∴H′(x)≤H′(0)=0,故H(x)在[0,1)单调递减,
∴H(x)≤H(0)=2.∴a+1+H(x)≤a+3.
∴当a≤-3时,f(x)≥g(x)在[0,1)上恒成立.
下面证明当a>-3时,f(x)≥g(x)在[0,1)上不恒成立.
f(x)-g(x)≤class="stub"1
1+x
-(1+ax+class="stub"1
2
x3+2xcosx)
=class="stub"-x
1+x
-ax-
x3
2
-2xcosx
=-x(class="stub"1
1+x
+a+
x2
2
+2cosx)

令v(x)=class="stub"1
1+x
+a+
x2
2
+2cosx
=class="stub"1
1+x
+a+H(x)
,则v′(x)=class="stub"-1
(1+x)2
+H(x)

当x∈[0,1)时,v′(x)≤0,故v(x)在[0,1)上是减函数,
∴v(x)∈(a+1+2cos1,a+3].
当a>-3时,a+3>0.
∴存在x0∈(0,1),使得v(x0)>0,此时,f(x0)<g(x0).
即f(x)≥g(x)在[0,1)不恒成立.
综上实数a的取值范围是(-∞,-3].

更多内容推荐