已知数列{an}和{bn}满足:a1=λ,an+1=23an+n,bn=(-1)n(an-3n+9),其中λ为实数,n为正整数.(1)若数列{an}前三项成等差数列,求λ的值;(2)试判断数列{bn}

题目简介

已知数列{an}和{bn}满足:a1=λ,an+1=23an+n,bn=(-1)n(an-3n+9),其中λ为实数,n为正整数.(1)若数列{an}前三项成等差数列,求λ的值;(2)试判断数列{bn}

题目详情

已知数列{an}和{bn}满足:a1=λ,an+1=
2
3
an+n
,bn=(-1)n(an-3n+9),其中λ为实数,n为正整数.
(1)若数列{an}前三项成等差数列,求λ的值;
(2)试判断数列{bn}是否为等比数列,并证明你的结论;
(3)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
题型:解答题难度:中档来源:不详

答案

(1)∵a1=λ,∴a2=class="stub"2
3
a1+1
=class="stub"2
3
λ+1
a3=class="stub"2
3
a2+2
=class="stub"2
3
(class="stub"2
3
λ+1)+2
=class="stub"4
9
λ+class="stub"8
3

∵数列{an}前三项成等差数列,∴2a2=a1+a3,
2(class="stub"2
3
λ+1)=λ+class="stub"4
9
λ+class="stub"8
3
,解得λ=-6.
∴λ的值为-6.
(2)由(1)可知:若λ=-6,则an=-6+3(n-1)=3n-9,此时bn=0不是等比数列;
当λ≠-6时,an≠3n-9.
bn+1=(-1)n+1[an+1-3(n+1)+9]=(-1)n+1(class="stub"2
3
an+n-3n+6)
=-class="stub"2
3
×(-1)n(an-3n+9)
=-class="stub"2
3
bn

又b1=-(a1-3+9)=-λ-6≠0,
∴数列{bn}是以-λ-6为首项,-class="stub"2
3
为公比的等比数列.
(3)由(1)(2)可知:①当λ=-6时,bn=0,对于给定的0<a<b,对任意正整数n,0<a<Sn<b不成立.
②当λ≠-6时,假设存在实数λ,使得对任意正整数n,都有a<Sn<b成立.
由(2)可知:数列{bn}是以-λ-6为首项,-class="stub"2
3
为公比的等比数列,∴bn=(-λ-6)×(-class="stub"2
3
)n-1
=(-1)n(λ+6)•(class="stub"2
3
)n-1

∴Sn=(-λ-6)[1-class="stub"2
3
+(-class="stub"2
3
)2+…+(-class="stub"2
3
)n-1]
=(-λ-6)•
1-(-class="stub"2
3
)n
1-(-class="stub"2
3
)
=
3(-λ-6)
5
[1-(-class="stub"2
3
)n]

当n→+∞时,(-class="stub"2
3
)n
→0.
当λ>-6时,Sn<0,此时对任意正整数n,a<Sn<b不成立.
当λ<-6时,n=2k(k∈N*)时,∵class="stub"5
9
<1-(-class="stub"2
3
)2k<1
,∴0<class="stub"-λ-6
3
Sn
3(-λ-6)
5

n=2k-1(k∈N*)时,1<1-(-class="stub"2
3
)2k-1<class="stub"5
3
,∴0<
3(-λ-6)
5
Sn<(-λ-6)

0<class="stub"-λ-6
3
3(-λ-6)
5
<(-λ-6).
∴对于任意正整数n,0<class="stub"-λ-6
3
Sn<-λ-6

∵设0<a<b,Sn为数列{bn}的前n项和,使得对任意正整数n,都有a<Sn<b.
∴必有
a≤class="stub"-λ-6
3
b≥-λ-6
,解得-6-b≤λ≤-3a-6.(a≤class="stub"b
3
)

更多内容推荐