已知数列{an}是首项为a1=14,公比q=14的等比数列,设bn+2=3log14an(n∈N*),数列{cn}满足cn=an•bn(1)求证:{bn}是等差数列;(2)求数列{cn}的前n项和Sn

题目简介

已知数列{an}是首项为a1=14,公比q=14的等比数列,设bn+2=3log14an(n∈N*),数列{cn}满足cn=an•bn(1)求证:{bn}是等差数列;(2)求数列{cn}的前n项和Sn

题目详情

已知数列{an}是首项为a1=
1
4
,公比q=
1
4
的等比数列,设bn+2=3log
1
4
an
(n∈N*),数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
题型:解答题难度:中档来源:不详

答案

(1)由题意知,an=(class="stub"1
4
)n(n∈N*)

bn=3logclass="stub"1
4
an-2,b1=3logclass="stub"1
4
a1-2=1

bn+1-bn=3logclass="stub"1
4
an+1-3logclass="stub"1
4
an=3logclass="stub"1
4
an+1
an
=3logclass="stub"1
4
q=3

∴数列{bn}是首项b1=1,公差d=3的等差数列(7分)
(2)由(1)知,an=(class="stub"1
4
)nbn=3n-2(n∈N*)

cn=(3n-2)×(class="stub"1
4
)n,(n∈N*)

Sn=1×class="stub"1
4
+4×(class="stub"1
4
)2+7×(class="stub"1
4
)3++(3n-5)×(class="stub"1
4
)n-1+(3n-2)×(class="stub"1
4
)n

于是class="stub"1
4
Sn=1×(class="stub"1
4
)2+4×(class="stub"1
4
)3+7×(class="stub"1
4
)4++(3n-5)×(class="stub"1
4
)n+(3n-2)×(class="stub"1
4
)n+1

两式相减得class="stub"3
4
Sn=class="stub"1
4
+3[(class="stub"1
4
)2+(class="stub"1
4
)3++(class="stub"1
4
)n]-(3n-2)×(class="stub"1
4
)n+1
=class="stub"1
2
-(3n+2)×(class="stub"1
4
)n+1

Sn=class="stub"2
3
-class="stub"12n+8
3
×(class="stub"1
4
)n+1(n∈N*)
(14分)

更多内容推荐