如图,在矩形ABCD中,AB=2BC,P、Q分别为线段AB、CD的中点,EP⊥平面ABCD。(1)求证:AQ∥平面CEP;(2)求证:平面AEQ⊥平面DEP。-高一数学

题目简介

如图,在矩形ABCD中,AB=2BC,P、Q分别为线段AB、CD的中点,EP⊥平面ABCD。(1)求证:AQ∥平面CEP;(2)求证:平面AEQ⊥平面DEP。-高一数学

题目详情

如图, 在矩形ABCD中,AB=2BC,P、Q分别为线段AB、CD的中点,EP⊥平面ABCD。
(1)求证:AQ∥平面CEP;
(2)求证:平面AEQ⊥平面DEP。
题型:证明题难度:中档来源:0113 月考题

答案

证明:(1)在矩形ABCD中,∵AP=PB,DQ=QC,
∴APCQ,
∴AQCP为平行四边形,
∴CP∥AQ,
∵CP平面CEP,AQ平面CEP,
∴AQ∥平面CEP。
(2)∵EP⊥平面ABCD,AQ平面ABCD,
∴AQ⊥EP,
∵AB=2BC,P为AB的中点,
∴AP=AD,
连PQ,ADQP为正方形,
∴AQ⊥DP,
又EP∩DP=P,
∴AQ⊥平面DEP,
∵AQ平面AEQ,
∴平面AEQ⊥平面DEP。

更多内容推荐