如图,将正方形ABCD沿对角线BD折成直二面角,连接A′C得到三棱锥A′-BCD,A′F垂直BD于F,E为BC的中点,(Ⅰ)求证:EF∥平面A′CD;(Ⅱ)求直线A′E与平面BCD所成角的余弦值;(Ⅲ

题目简介

如图,将正方形ABCD沿对角线BD折成直二面角,连接A′C得到三棱锥A′-BCD,A′F垂直BD于F,E为BC的中点,(Ⅰ)求证:EF∥平面A′CD;(Ⅱ)求直线A′E与平面BCD所成角的余弦值;(Ⅲ

题目详情

如图,将正方形ABCD沿对角线BD折成直二面角,连接A′C得到三棱锥A′-BCD,A′F垂直BD于F,E为BC的中点,
(Ⅰ)求证:EF∥平面A′CD;
(Ⅱ)求直线A′E与平面BCD所成角的余弦值;
(Ⅲ)二面角B-A′C-D的余弦值.
题型:解答题难度:中档来源:陕西省模拟题

答案

(Ⅰ)根据题意,有平面A′BD⊥平面BCD,A′F⊥BD于F,A′D= A′B,
∴F为BD的中点,
又E为BC的中点,
∴EF∥CD,
∴EF∥平面A′CD。
(Ⅱ)∵平面A′BD⊥平面BCD,A′F⊥BD,
∴A′F⊥平面BCD,
∴∠A′EF为直线A′E与平面BCD所成的角,
设正方形ABCD边长为a,则

∴直线A′E与平面BCD所成角的余弦值为
(Ⅲ)连结FC,有,∴
∴A′B=BC=A′C=A′D=CD=a,
取A′C的中点为M,则BM⊥A′C,DM⊥A′C,
∴∠BMD为二面角B-A′C-D的平面角,
∵△A′BC和△A′DC都为正三角形,


∴二面角B-A′C-D的余弦值为

更多内容推荐