已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n≠0时,有f(m)+f(n)m+n>0.(1)解不等式f(x+12)<f(1-x);(2)若f(x)≤t2-2

题目简介

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n≠0时,有f(m)+f(n)m+n>0.(1)解不等式f(x+12)<f(1-x);(2)若f(x)≤t2-2

题目详情

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n≠0时,有
f(m)+f(n)
m+n
>0

(1)解不等式f(x+
1
2
)<f(1-x)

(2)若f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)任取x1,x2∈[-1,1]且x1<x2,则f(x2)-f(x1)=f(x2)+f(-x1)=
f(x2)+f(-x1)
x2+(-x1)
•(x2-x1)>0

∴f(x2)>f(x1),∴f(x)为增函数
f(x+class="stub"1
2
)<f(1-x)

-1≤x+class="stub"1
2
≤1
-1≤1-x≤1
x+class="stub"1
2
<1-x

0≤x<class="stub"1
4

即不等式f(x+class="stub"1
2
)<f(1-x)
的解集为[0,class="stub"1
4
)

(2)由于f(x)为增函数,∴f(x)的最大值为f(1)=1,
∴f(x)≤t2-2at+1对x∈[-1,1],a∈[-1,1]恒成立,等价于t2-2at+1≥1对任意的a∈[-1,1]恒成立,
即t2-2at≥0对任意的a∈[-1,1]恒成立.
把y=t2-2at看作a的函数,由于a∈[-1,1]知其图象是一条线段.
∵t2-2at≥0对任意的a∈[-1,1]恒成立
t2-2×(-1)×t≥0
t2-2×1×t≥0

t2+2t≥0
t2-2t≥0

解得t≤-2或t=0或t≥2.

更多内容推荐