优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 已知定义在R上的函数f(x)=1-2x2x+1是奇函数.(I)求实数a的值;(Ⅱ)判断f(x)的单调性,并用单调性定义证明;(Ⅲ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,
已知定义在R上的函数f(x)=1-2x2x+1是奇函数.(I)求实数a的值;(Ⅱ)判断f(x)的单调性,并用单调性定义证明;(Ⅲ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,
题目简介
已知定义在R上的函数f(x)=1-2x2x+1是奇函数.(I)求实数a的值;(Ⅱ)判断f(x)的单调性,并用单调性定义证明;(Ⅲ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,
题目详情
已知定义在R上的函数f(x)=
1
-2
x
2
x
+1
是奇函数.
(I)求实数a的值;
(Ⅱ)判断f(x)的单调性,并用单调性定义证明;
(Ⅲ)若对任意的t∈R,不等式f(t
2
-2t)+f(2t
2
-k)<0恒成立,求实数k的取值范围.
题型:解答题
难度:中档
来源:不详
答案
(I)由于定义在R上的函数f(x)=
1
-2
x
2
x
+1
是奇函数,故有f(0)=0,即
class="stub"a-1
2
=0,解得 a=1.
(Ⅱ)由上可得 f(x)=
1
-2
x
2
x
+1
=
class="stub"2
1
+2
x
-1
,设x1<x2,可得f(x1)-f(x2)=(
class="stub"2
1
+2
x
1
-1
)-(
class="stub"2
1
+2
x
2
-1
)
=
class="stub"2
1
+2
x
1
-
class="stub"2
1
+2
x
2
=
2
(2
x
2
-2
x
1
)
(1
+2
x
1
)(1
+2
x
2
)
.
由题设可得
2
x
2
-
2
x
1
>0,(1+
2
x
2
)(1+
2
x
1
)>0,故f(x1)-f(x2)>0,即f(x1)>f(x2),
故函数f(x)是R上的减函数.
(Ⅲ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,等价于f(t2-2t)<-f(2t2-k)=f(-2t2+k) 恒成立,
等价于 t2-2t>-2t2+k恒成立,等价于3t2-2t-k>0恒成立,故有判别式△=4+12k<0,
解得k<-
class="stub"1
3
,故k的范围为(-∞,-
class="stub"1
3
).
上一篇 :
设0≤x≤2,则函数f(x)=4x-12-3
下一篇 :
已知函数g(x)=4x-n2x是奇函数,f
搜索答案
更多内容推荐
函数y=4x+2x+1+5,x∈[1,2]的最大值为()A.20B.25C.29D.31-数学
已知函数f(x)是定义在R上的函数,其最小正周期为3,且x∈(0,3)时,f(x)=log2(3x+1),则f(2012)=()A.4B.2C.-2D.log27-数学
设a>0,函数f(x)=x2+a|lnx-1|.(Ⅰ)当a=2时,求函数f(x)的单调增区间;(Ⅱ)若x∈[1,+∞)时,不等式f(x)≥a恒成立,实数a的取值范围.-数学
已知函数f(logax)=aa2-1(x-x-1),其中a>0且a≠1.(1)求f(x)的解析式;(2)判断并证明f(x)的单调性;(3)当x∈(-∞,2)时,f(x)-4的值恒为负数,求实数a的取值
定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[-1,0)时f(x)=(12)x,则f(log28)等于______.-数学
已知定义在R上的函数f(x)满足:f(x)f(x+2)=13,若f(1)=2,则f(2011)=().-高三数学
已知定义在R上的奇函数f(x),当x∈(0,+∞)时,f(x)=log2x,则方程f(x)=0的解集为______.-数学
定义在R上的偶函数f(x)在[0,+∞)上单调递减,且f(12)=0,则满足f(log14x)<0的集合为______.-数学
已知函数f(x)=ax3-2bx2+3cx(a,b,c∈R)的图象关于原点对称,且当x=1时,f(x)取极小值-23.(1)求a,b,c的值;(2)当x∈[-1,1]时,图象上是否存在两点,使得在这两
下列四个函数中,以π为最小正周期,且在区间(π2,π)上为减函数的是()A.y=sin2xB.y=2|cosx|C.y=-tanxD.y=cosx2-数学
已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,并说明理由.(2)若存在一个实数x0,使不等式m-f(x0)>0成立,求实数m的取值范围.-数学
对于0≤m≤4的m,不等式x2+mx>4x+m-3恒成立,则x的取值范围是______.-数学
已知函数f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行.①求函数的单调区间;②求函数的极大值与极小值的差;③当x∈[1,3]时,f(x)>1-
已知f(x)是指数函数,且f(1+3)•f(1-3)=9,若g(x)是f(x)的反函数,那么g(10+1)+g(10-1)=______.-数学
设f(x)、g(x)都是单调函数,有如下四个命题中,正确的命题是()①若f(x)单调递增,g(x)单调递增,则f(x)-g(x)单调递增;②若f(x)单调递增,g(x)单调递减,则f(x)-g(x)单
设一次函数f(x)=ax+b,其中a,b为实数,f1(x)=f(x),fn+1(x)=f(fn(x)),n=1,2,3,…,若f5(x)=32x+31,则f2008(-1)=______.-数学
函数f(x)=(x-1)(log3a)2-6(log3a)x+5x+7在区间[0,1]上的函数值恒为正实数,则a的取值范围是______.-数学
判断下列函数的奇偶性:(1);(2)。-高一数学
已知函数f(x)=x2,x≤0f(x-2),x>0,则f(3)=______.-数学
设f(x)是R上的奇函数,且当x>0时f(x)=x2+x+1,则f(-2)=______.-数学
已知函数f(x)=(logax)2-logax-2(a>0,a≠1).(Ⅰ)当a=2时,求f(2);(Ⅱ)求解关于x的不等式f(1+x1-x)>0;(Ⅲ)若函数f(x)在[2,4]的最小值为4,求实数
设f(x)是以5为周期的奇函数,f(-3)=1,又tanα=3,则f(sec2α-2)=______.-数学
用函数单调性定义证明,函数f(x)=x3+1x在[1,+∞)上是增函数.-数学
某汽车厂有一条价值为a万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值y万元与技术改造投入x万元之间满足:①y与-数学
如果函数f(x)=2x-aa•2x+1(a<0)是奇函数,则函数y=f(x)的值域是()A.[-1,1]B.(-1,1]C.(-1,1]D.(-∞,-1)∪(1,+∞)-数学
已知函数f(x)=log_12(x2-ax+3a)在[2,+∞)上是减函数,则实数a的范围是()A.(-∞,4]B.(-4,4]C.(0,12)D.(0,4]-数学
动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是(12,32),则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递-
对于任意实数a(a≠0)和b及m∈[1,2],不等式|a+b|+|a-b|≥|a|•(m2-km+1)恒成立,则实数k的取值范围为______.-数学
定义在(-∞,+∞)上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,下面是关于f(x)的判断:①f(x)关于点P(12,0)对称②f(x)的图象关于直线x=1对称;③在[0
已知f(x)=cosπx,x≤0f(x-1)+1,x>0,则f(43)的值为______.-数学
已知函数f(x)满足:f(1)=14,4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),则f(2010)=______.-数学
已知函数f(x)=x2+bx+c,g(x)=2x+b,对任意的x∈R,恒有g(x)≤f(x).(1)证明:c≥1;(2)若b>0,不等式m(c2-b2)≥f(c)-f(b)恒成立,求m的取值范围.-数
已知函数f(x)=xlnx.(Ⅰ)求f(x)的最小值;(Ⅱ)若对所有x≥1都有f(x)≥ax-1,求实数a的取值范围.-数学
设f(x)=e|x|-sinx+1e|x|+1在[-m,m](m>0)上的最大值为p,最小值为q,则p+q=______.-数学
已知定义域为R上的函数f(x)满足f(2+x)=-f(2-x),当x<2时,f(x)单调递增,如果x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值()A.可能为0B.恒大于
讨论函数y=bxx2-1(-1<x<1,b≠0)的单调性.-数学
在区间D上,如果函数f(x)为增函数,而函数1xf(x)为减函数,则称函数f(x)为“弱增”函数.已知函数f(x)=1-11+x.(1)判断函数f(x)在区间(0,1]上是否为“弱增”函数;(2)设x
若函数y=f(x)的图象与函数y=log21x+1的图象关于y=x对称,则f(1)=______.-数学
设函数f(x)=x3+3x2+6x+4,a,b都是实数,且f(a)=14,f(b)=-14,则a+b的值为()A.2B.1C.0D.-2-数学
定义一种运算“*”对于正整数满足以下运算性质:(1)2*2010=1;(2)(2n+2)*2010=3×[(2n)*2010],则2008*2010=______.-数学
已知函数f(x)=|x-m|和函数g(x)=x|x-m|+m2-7m.(1)若方程f(x)=|m|在[-4,+∞)上有两个不同的解,求实数m的取值范围;(2)若对任意x1∈(-∞,4],均存在x2∈[
设函数f(x)=2-xx≥0x-2x<0.若f(x0)<1,则x0的取值范围是______.-数学
(1)如果两个实数u<v,求证:2u<v2-u2v-u<2v.(2)定义设函数F(x)和f(x)都在区间I上有定义,若对I的任意子区间[u,v],总有[u,v]上的p和q,使有不等式f(p)≤F(u)
设f0(x)=sin(x),f1(x)=f0'(x),f2(x)=f1'(x),…,fn+1(x)=fn'(x),n∈N,则f2013(x)=()A.sinxB.-sin
已知函数。(Ⅰ)讨论f(x)的奇偶性;(Ⅱ)判断f(x)在(-∞,0)上的单调性并用定义证明。-高一数学
设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=2x2.(Ⅰ)求x<0时,f(x)的表达式;(Ⅱ)令g(x)=lnx,问是否存在x0,使得f(x),g(x)在x=x0处的切线互相平行?若存在,
已知函数y=f(x)是奇函数,当x<0时,f(x)=x2+ax(a∈R),f(2)=6,则a=______.-数学
已知函数f(x)=(x-1x+1)2(x>1).(1)求f-1(x)的表达式;(2)判断f-1(x)的单调性;(3)若对于区间[14,12]上的每一个x的值,不等式(1-x)f-1(x)>m(m-x)
若函f(x)=x2+ax+1(x∈R)是偶函数,则实数a=______.-数学
已知f(x)、g(x)分别是R上的奇函数、偶函数,且f(x)-g(x)=ex(Ⅰ)f(x),g(x)的解析式;(Ⅱ)证明:f(x)在(-∞,+∞)上是增函数.-数学
返回顶部
题目简介
已知定义在R上的函数f(x)=1-2x2x+1是奇函数.(I)求实数a的值;(Ⅱ)判断f(x)的单调性,并用单调性定义证明;(Ⅲ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,
题目详情
(I)求实数a的值;
(Ⅱ)判断f(x)的单调性,并用单调性定义证明;
(Ⅲ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.
答案
(Ⅱ)由上可得 f(x)=
=
由题设可得2x2-2x1>0,(1+2x2)(1+2x1)>0,故f(x1)-f(x2)>0,即f(x1)>f(x2),
故函数f(x)是R上的减函数.
(Ⅲ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,等价于f(t2-2t)<-f(2t2-k)=f(-2t2+k) 恒成立,
等价于 t2-2t>-2t2+k恒成立,等价于3t2-2t-k>0恒成立,故有判别式△=4+12k<0,
解得k<-