已知y=f(x)是奇函数,且满足f(x+1)=f(x-1),当x∈(0,1)时,f(x)=log211-x,则y=f(x)在(1,2)内是()A.单调增函数,且f(x)<0B.单调减函数,且f(x)>

题目简介

已知y=f(x)是奇函数,且满足f(x+1)=f(x-1),当x∈(0,1)时,f(x)=log211-x,则y=f(x)在(1,2)内是()A.单调增函数,且f(x)<0B.单调减函数,且f(x)>

题目详情

已知y=f(x)是奇函数,且满足f(x+1)=f(x-1),当x∈(0,1)时,f(x)=log2
1
1-x
,则y=f(x)在(1,2)内是(  )
A.单调增函数,且f(x)<0B.单调减函数,且f(x)>0
C.单调增函数,且f(x)>0D.单调减函数,且f(x)<0
题型:单选题难度:偏易来源:不详

答案

∵f(x+1)=f(x-1),
∴f(x+2)=f(x)即f(x)是周期为2的周期函数
∵当x∈(0,1)时,f(x)=log2class="stub"1
1-x
>0,且函数在(0,1)上单调递增,y=f(x)是奇函数,
∴当x∈(-1,0)时,f(x)<0,且函数在(-1,0)上单调递增
根据函数的周期性可知y=f(x)在(1,2)内是单调增函数,且f(x)<0
故选A

更多内容推荐