设函数f(x)=-cos2x-4tsinx2cosx2+2t2-3t+4,x∈R,其中|t|≤1,将f(x)的最小值记为g(t).(1)求函数g(t)的表达式;(2)判断g(t)在[-1,1]上的单调

题目简介

设函数f(x)=-cos2x-4tsinx2cosx2+2t2-3t+4,x∈R,其中|t|≤1,将f(x)的最小值记为g(t).(1)求函数g(t)的表达式;(2)判断g(t)在[-1,1]上的单调

题目详情

设函数f(x)=-cos2x-4tsin
x
2
cos
x
2
+2t2-3t+4,x∈R,其中|t|≤1,将f(x)的最小值记为g(t).
(1)求函数g(t)的表达式;
(2)判断g(t)在[-1,1]上的单调性,并求出g(t)的最值.
题型:解答题难度:中档来源:金山区一模

答案

(1)因为函数f(x)=-cos2x-4tsinclass="stub"x
2
cosclass="stub"x
2
+2t2-3t+4,x∈R,其中|t|≤1,
所以f(x)=sin2x-2tsinx+2t2-3t+3=(sinx-t)2+t2-3t+3
g(t)=f(x)min=f(t)=t2-3t+3
(2)g(t)=t2-3t+3=(t-class="stub"3
2
)2+class="stub"3
4
,其对称轴为t=class="stub"3
2
,开口向上,
所以g(t)在[-1,1]上的单调性为单调递减,
g(t)min=1
g(t)max=7

更多内容推荐