已知函数f(x)=x1+x2.(1)判断其奇偶性;(2)指出该函数在区间(0,1)上的单调性并证明;(3)利用(1)、(2)的结论,指出该函数在(-1,0)上的增减性.-数学

题目简介

已知函数f(x)=x1+x2.(1)判断其奇偶性;(2)指出该函数在区间(0,1)上的单调性并证明;(3)利用(1)、(2)的结论,指出该函数在(-1,0)上的增减性.-数学

题目详情

已知函数f(x)=
x
1+x2

(1)判断其奇偶性;
(2)指出该函数在区间(0,1)上的单调性并证明;
(3)利用(1)、(2)的结论,指出该函数在(-1,0)上的增减性.
题型:解答题难度:中档来源:不详

答案

(1)函数的定义域为R
f(-x)=class="stub"-x
1+(-x)2
=-class="stub"x
1+x2
=-f(x)

∴f(x)是奇函数;
(2)函数f(x)在(0,1)上是增函数
证明:任取x1、x2满足0<x1<x2<1则
f(x1)-f(x2)=
x1
1+
x21
-
x2
1+
x22
=
(x1-x2)(1-x1x2)
(1+
x21
)(1+
x22
)

∵0<x1<x2<1,
∴x1-x2<0,0<x1x2<1,
∴f(x1)<f(x2)
因此函数f(x)在(0,1)上是递增函数;
(3)由于f(x)是R上的奇函数,在(0,1)上又是递增函数,
因而该函数在(-1,0)上也是增函数.

更多内容推荐