已知正实数x,y满足等式x+y+8=xy,若对任意满足条件的x,y,都有不等式(x+y)2-a(x+y)+1≥0恒成立,则实数a的取值范围是______.-数学

题目简介

已知正实数x,y满足等式x+y+8=xy,若对任意满足条件的x,y,都有不等式(x+y)2-a(x+y)+1≥0恒成立,则实数a的取值范围是______.-数学

题目详情

已知正实数x,y满足等式x+y+8=xy,若对任意满足条件的x,y,都有不等式(x+y)2-a(x+y)+1≥0恒成立,则实数a的取值范围是______.
题型:填空题难度:中档来源:杭州二模

答案

∵正实数x,y满足等式x+y+8=xy
∴x+y+8≤
(x+y)2
4

∴(x+y-8)(x+y+4)≥0
∵x+y+4≥0
∴x+y-8≥0
∴x+y≥8(当且仅当x=y=4时,取等号)
∵对任意满足条件的正实数x,y,都有不等式(x+y)2-a(x+y)+1≥0
a≤(x+y)+class="stub"1
x+y
对任意满足条件的正实数x,y恒成立
令t=x+y(t≥8),则f(t)=t+class="stub"1
t
在(8,+∞)上为单调增函数
∴f(t)=t+class="stub"1
t
≥8+class="stub"1
8
=class="stub"65
8
(当且仅当t=8,即x=y=4时,取等号)
a≤class="stub"65
8

∴实数a的取值范围是(-∞,class="stub"65
8
]
故答案为:(-∞,class="stub"65
8
]

更多内容推荐