已知sinα=513,α∈(π2,π).(Ⅰ)求cosα;(Ⅱ)求tanα2-cos(π-2α).-数学

题目简介

已知sinα=513,α∈(π2,π).(Ⅰ)求cosα;(Ⅱ)求tanα2-cos(π-2α).-数学

题目详情

已知sinα=
5
13
α∈(
π
2
,π)

(Ⅰ)求cosα;
(Ⅱ)求tan
α
2
-cos(π-2α)
题型:解答题难度:中档来源:怀柔区模拟

答案

(Ⅰ)∵sinα=class="stub"5
13
α∈(class="stub"π
2
,π)

∴cosα=-
1-sin2α
=-class="stub"12
13

(Ⅱ)∵tanα=class="stub"sinα
cosα
=-class="stub"5
12
,又tanα=
2tanclass="stub"α
2
1-tan2class="stub"α
2

2tanclass="stub"α
2
1-tan2class="stub"α
2
=-class="stub"5
12
,即(5tanclass="stub"α
2
+1)(tanclass="stub"α
2
-5)=0,
解得:tanclass="stub"α
2
=-class="stub"1
5
,或tanclass="stub"α
2
=5,
因为α∈(class="stub"π
2
,π)
,所以class="stub"α
2
∈(class="stub"π
4
class="stub"π
2
),
所以tanclass="stub"α
2
>0,故tanclass="stub"α
2
=5,
又cos(π-2α)=-cos2α=-2cos2α+1=-2×(-class="stub"12
13
)
2
+1=-class="stub"119
169

tanclass="stub"α
2
-cos(π-2α)
=5+class="stub"119
169
=5class="stub"119
169

更多内容推荐