优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 如图,在棱长为1的正方体ABCD-A′B′C′D′中,AP=BQ=b(0<b<1),截面PQEF∥A′D,截面PQGH∥AD′,(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;(Ⅱ)证明:截面PQEF
如图,在棱长为1的正方体ABCD-A′B′C′D′中,AP=BQ=b(0<b<1),截面PQEF∥A′D,截面PQGH∥AD′,(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;(Ⅱ)证明:截面PQEF
题目简介
如图,在棱长为1的正方体ABCD-A′B′C′D′中,AP=BQ=b(0<b<1),截面PQEF∥A′D,截面PQGH∥AD′,(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;(Ⅱ)证明:截面PQEF
题目详情
如图,在棱长为1的正方体ABCD-A′B′C′D′中,AP=BQ=b(0<b<1),截面PQEF∥A′D,截面PQGH∥AD′,
(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;
(Ⅱ)证明:截面PQEF和截面PQGH面积之和是定值,并求出这个值;
(Ⅲ)若b=
,求D′E与平面PQEF所成角的正弦值。
题型:解答题
难度:中档
来源:辽宁省高考真题
答案
(Ⅰ)证明:在正方体中,
,
又由已知可得
,
所以
,
所以PH⊥平面PQEF,
所以平面PQEF和平面PQGH互相垂直.
(Ⅱ)证明:由(Ⅰ)知
,
又截面PQEF和截面PQGH都是矩形,且PQ=1,
所以截面PQEF和截面PQGH面积之和是
,是定值.
(Ⅲ)解:设AD′交PF于点N,连结EN,
因为AD′⊥平面PQEF,
所以∠D′EN为D′E与平面PQEF所成的角,
因为
,
所以P,Q,E,F分别为 AA′,BB′,BC,AD的中点,
可知
,
所以
。
上一篇 :
如图,圆柱OO1内有一个三棱柱ABC
下一篇 :
给定下列四个命题:①如果两个平
搜索答案
更多内容推荐
如图,在底面是矩形的四棱锥P-ABCD中,PA⊥ABCD,E,F分别是PC,PD的中点,PA=PB=1,BC=2。(1)求证:EF∥平面PAB;(2)求证:平面PAD⊥平面PDC;(3)求二面角A-P
已知点A(-3,1,4),它关于原点的对称点为B,关于平面yOz的对称点为C,则BC=______.-数学
如图,三棱锥A-BCD是正三棱锥,O为底面BCD的中心,以O为坐标原点,分别以OD、OA为y、z轴建立如图所示的空间直角坐标系O-xyz,若|OA|=|BC|=12,则线段AC的中点坐标是______
如图,已知正方体ABCD-A1B1C1D1棱长为2,E是线段B1C的中点,分别以AB、AD、AA1为x、y、z轴建立如图所示的空间直角坐标系A-xyz,点E的坐标是______.-高二数学
下列命题中错误的是[]A、如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB、如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC、如果平面α⊥平面γ,平面-高三数学
如图,在圆锥PO中,已知PO=,⊙O的直径AB=2,C是的中点,D为AC的中点,(Ⅰ)证明:平面POD⊥平面PAC;(Ⅱ)求二面角B-PA-C的余弦值.-高三数学
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=。(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;(2)求四棱锥P
已知两条不同直线m、l,两个不同平面α、β,给出下列命题:①若l垂直于α内的两条相交直线,则l⊥α;②若l∥α,则l平行于α内的所有直线;③若mα,lβ且l⊥m,则α⊥β;④若lβ,l⊥α,则α⊥β-
已知直线l⊥平面α,直线m平面β,给出下列命题:①α∥βl⊥m;②α⊥βl∥m;③l∥mα⊥β;④l⊥mα∥β;其中正确命题的序号是[]A.①②③B.②③④C.①③D.②④-高三数学
如图已知四棱锥S-ABCD的底面是直角梯形,AB∥DC,∠DAB=90°,SA⊥底面ABCD,且SA=AD=DC=AB=1,M是SB的中点,(1)证明:平面SAD⊥平面SCD;(2)求AC与SB所成角
设m、n是两条不同的直线,α、β是两个不同的平面,考查下列命题,其中正确的命题是[]A.m⊥α,,m⊥nα⊥βB.α∥β,m⊥α,n∥βm⊥nC.α⊥β,m⊥α,n∥βm⊥nD.α⊥β,α∩β=m,n
已知A(-3,1,5),B(4,3,1),则线段AB的中点M的坐标为______.-数学
在空间直角坐标系中,点M的坐标是(4,5,6),则点M关于y轴的对称点在坐标平面xOz上的射影的坐标为______.-高一数学
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=。(1)证明:平面PBE⊥平面PAB;(2)求二面角A-BE-P和的大小。-高三
如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是BC上的高,沿AD把△ABC折起,使∠BCD=90°。(Ⅰ)证明:平面ADB⊥平面BDC;(Ⅱ)设E为BC的中点,求与夹角的余弦值。-高三
如图,在三棱锥P-ABC中,E,F分别为AC,BC的中点。(1)求证:EF∥平面PAB;(2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°,求证:平面PEF⊥平面PBC。-高二数学
如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2。(1)若D为AA1中点,求证:平面B1CD⊥平面B1C1D;(2)若二面角B1-DC-C1的大小为60°,求AD的长
已知m,n,l是直线,α、β是平面,下列命题中:①若l垂直于α内两条直线,则l⊥α;②若l平行于α,则α内可有无数条直线与l平行;③若,且l⊥m,则α⊥β;④若m⊥n,n⊥l,则m∥l;⑤若,且α∥-
已知O为坐标原点,A(1,2,-1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则BC=()A.(-2,0,2)B.(0,-4,0)C.(0,4,2)D.(-2,4,2)-数学
如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.(1)求证:平面AEC⊥平面PDB;(2)当且E为PB的中点时,求AE与平面PDB所成的角的大小.-高二数学
已知点B是点A(3,7,-4)在xoz平面上的射影,则(OB)2等于()A.(9,0,16)B.25C.5D.13-数学
三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=,AB=,AC=2,A1C1=1,。(1)证明:平面A1AD⊥平面BCC1B1;
在空间直角坐标系中,在Ox轴上的点P1的坐标特点为______,在Oy轴上的点P2的坐标特点为______,在Oz轴上的点P3的坐标特点为______,在xOy平面上的点P4的坐标特点为______,
如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC边上高,把△ABD折起,使∠BDC=90°。(1)证明:平面ADB⊥平面BDC;(2)设BD=1,求三棱锥D-ABC的表面积。-高三数
在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA。(I)求证:平面EFG⊥平面PDC;(Ⅱ)求三棱锥P-MAB
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=1,直线B1C与平面ABC成30°角,(Ⅰ)求证:平面B1AC⊥平面ABB1A1;(Ⅱ)求二面角B-B1C-A的大小;(Ⅲ)求点
已知梯形ABCD中,BC∥AD,BC=AD=1,CD=,G,E,F分别是AD,BC,CD的中点,且CG=,沿直线CG将△CDG翻折成△CD′G,(Ⅰ)求证:EF∥平面AD′B;(Ⅱ)求证:平面CD′G
点A(-1,2,1)在x轴上的射影和在xOy平面上的射影分别是()A.(-1,0,1),(-1,2,0)B.(-1,0,0),(-1,0,0)C.(-1,0,0),(-1,2,0)D.(-1,2,1)
点P(1,1,-2)关于xoy平面的对称点的坐标是______.-数学
三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=,AB=AC=2A1C1=2,D为BC的中点。(1)证明:平面A1AD⊥平面BC
在空间直角坐标系中,点P(1,2,3),过点P作平面xOy的垂线PQ,则Q的坐标为()A.(0,2,0)B.(0,2,3)C.(1,0,3)D.(1,2,0)-数学
如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B。(I)证明:平面AB1C⊥平面A1BC1;(II)设D是A1C1上的点,且A1B∥平面B1CD,求A1D:DC1的值。-高三数学
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD。(1)证明:平面PQC⊥平面DCQ;(2)求二面角Q-BP-C的余弦值。-高三数学
(理)在空间直角坐标系O-xyz中,满足条件[x]2+[y]2+[z]2≤1的点(x,y,z)构成的空间区域Ω2的体积为V2([x],[y],[z]分别表示不大于x,y,z的最大整数),则V2=___
点M(3,-2,1)关于面yoz对称的点的坐标是()A.(-3,-2,1)B.(-3,2,-1)C.(-3,2,1)D.(-3,-2,-1)-数学
如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ(0<θ<)。(1)求证:平面VAB⊥平面VCD;(2)试确定角θ的值,使得直线BC与平面VAB
如图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C,D的点,AE=3,圆O的直径为9.(Ⅰ)求证:平面ABCD⊥平面ADE;(Ⅱ)求
在长方体OABC-O1A1B1C1中,OO1=a,OA=b,OC=c,M是BB1中点,N是CC1中点,P是AA1上一点,且AP=2PA1,Q是OA反向延长线上一点,OA=2QO,以O为原点,OA,OC
在空间直角坐标系中点P(1,3,-5)关于xoy对称的点的坐标是()A.(-1,3,-5)B.(1,-3,5)C.(1,3,5)D.(-1,-3,5)-数学
已知m,n是两条不同的直线,α,β,γ是三个不同的平面,现给出下列四个命题,其中正确命题的序号为()。①若m⊥α,n∥α,则m⊥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若m∥α,n∥α,则m∥n;
设a、b是两条不同的直线,α、β是两个不同的平面,则下列四个命题中错误的为:[]A.若a⊥b,a⊥α,bα,则b∥αB.若a∥α,a⊥β,则α⊥βC.若a⊥β,α⊥β,则a∥αD.若a⊥b,a⊥α,b
如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,M为PD的中点,(Ⅰ)证明:PB∥平面ACM;(Ⅱ)证明:AD⊥平面PAC
设α,β是两个不同的平面,l是一条直线,以下命题正确的是[]A.若l⊥α,α⊥β,则lβB.若l∥α,α∥β,则lβC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β-高三数学
空间直角坐标系中,点A(2,5,6),点P在y轴上,PA=7,则点P的坐标为______.-数学
如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ(0<θ<)。(1)求证:平面VAB⊥平面VCD;(2)当确定角θ的值,使得直线BC与平面VAB
点P(1,4,-3)与点Q(3,-2,5)的中点坐标是()A.(4,2,2,)B.(2,1,1,)C.(2,-1,2,)D.(4,-1,2,)-数学
已知空间直角坐标系中A(1,1,0)且12AB=(4,0,2),则B点坐标为()A.(9,1,4)B.(9,-1,-4)C.(8,-1,-4)D.(8,1,4)-数学
已知直线m,平面α和β,下列结论中正确的是[]A、m∥α,α∥β=>m∥βB、m⊥α,α∥β=>m⊥βC、m∥α,α⊥β=>m⊥βD、m⊥α,α⊥β=>m∥β-高二数学
在空间直角坐标系中,已知A(1,-2,1),B(2,2,2),点P在z轴上,且满足|PA|=|PB|,则点P的坐标为______.-数学
如图,一张平行四边形的硬纸片ABC0D中,AD=BD=1,AB=。沿它的对角线BD把△BDC0折起,使点C0到达平面ABC0D外点C的位置。(Ⅰ)证明:平面ABC0D⊥平面CBC0;(Ⅱ)如果△ABC
返回顶部
题目简介
如图,在棱长为1的正方体ABCD-A′B′C′D′中,AP=BQ=b(0<b<1),截面PQEF∥A′D,截面PQGH∥AD′,(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;(Ⅱ)证明:截面PQEF
题目详情
(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;
(Ⅱ)证明:截面PQEF和截面PQGH面积之和是定值,并求出这个值;
(Ⅲ)若b=
答案
又由已知可得
所以
所以PH⊥平面PQEF,
所以平面PQEF和平面PQGH互相垂直.
(Ⅱ)证明:由(Ⅰ)知
又截面PQEF和截面PQGH都是矩形,且PQ=1,
所以截面PQEF和截面PQGH面积之和是
因为AD′⊥平面PQEF,
所以∠D′EN为D′E与平面PQEF所成的角,
因为
所以P,Q,E,F分别为 AA′,BB′,BC,AD的中点,
可知
所以