在实数集R中定义一种运算“*”,具有下列性质:①对任意a,b∈R,a*b=b*a;②对任意a∈R,a*0=a;③对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(b*c)-2c,则1*2=

题目简介

在实数集R中定义一种运算“*”,具有下列性质:①对任意a,b∈R,a*b=b*a;②对任意a∈R,a*0=a;③对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(b*c)-2c,则1*2=

题目详情

在实数集R中定义一种运算“*”,具有下列性质:
①对任意a,b∈R,a*b=b*a;
②对任意a∈R,a*0=a;
③对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(b*c)-2c,
则1*2=______;函数f(x)=x*
1
x
(x>0)的最小值为______.
题型:填空题难度:偏易来源:自贡一模

答案

由性质知:1*2=(1*2)*0=0*(1×2)+(1*0)+(2*0)-2×0=(1×2)*0+1+2=2+1+2=5;
依照上面的计算求得f(x)=(x*class="stub"1
x
)*0=0*(xclass="stub"1
x
)+( x*0)+(class="stub"1
x
*0 )-2×0=1+x+class="stub"1
x
-0≥3,
故填   5、3.

更多内容推荐