设函数f(x)=log2(1+x1-ax)(a∈R),若f(-13)=-1.(1)求f(x)解析式并判断其奇偶性;(2)当x∈[-1,0)时,求f(3x)的值域;(3)g(x)=log21+xk,若x

题目简介

设函数f(x)=log2(1+x1-ax)(a∈R),若f(-13)=-1.(1)求f(x)解析式并判断其奇偶性;(2)当x∈[-1,0)时,求f(3x)的值域;(3)g(x)=log21+xk,若x

题目详情

设函数f(x)=log2(
1+x
1-ax
)
(a∈R),若f(-
1
3
)=-1

(1)求f(x)解析式并判断其奇偶性;
(2)当x∈[-1,0)时,求f(3x)的值域;
(3)g(x)=log
2
1+x
k
,若x∈[
1
2
2
3
]
时,f(x)≤g(x)有解,求实数k取值集合.
题型:解答题难度:中档来源:不详

答案

(1)由于f(-class="stub"1
3
)=log2
1-class="stub"1
3
1+class="stub"a
3
=-1
,∴
class="stub"2
3
1+class="stub"a
3
=class="stub"1
2
,即class="stub"4
3
=1+class="stub"a
3
,解得a=1,
f(x)=log2class="stub"1+x
1-x

再由 class="stub"1+x
1-x
>0,求得-1<x<1
,∴定义域为(-1,1),定义域关于原点对称.
再根据f(-x)=log2class="stub"1-x
1+x
=log2(class="stub"1+x
1-x
)-1=-log2class="stub"1+x
1-x
=-f(x)
∴f(x)为奇函数.-----(3分)
(2)f(x)=log2(-1-class="stub"2
x-1
)
,∴f(3x)=log2(-1-class="stub"2
3x-1
)

∵-1≤x<0,∴-class="stub"2
3
≤3x-1<0,∴class="stub"2
3x-1
≤-3,即-class="stub"2
3x-1
≥3,
-1-class="stub"2
3x-1
≥2
,∴log2(-1-class="stub"2
3x-1
)≥log22=1

∴值域为[1,+∞).-----(7分)
(3)∵log2class="stub"1+x
1-x
≤log
2
class="stub"1+x
k
=2log2class="stub"1+x
k
=log2(class="stub"1+x
k
)2
,∴class="stub"1+x
1-x
≤(class="stub"1+x
k
)2

class="stub"1
2
≤x≤class="stub"2
3
,∴x+1>0.-------(9分)
令 h(x)=1-x2,显然h(x)在[class="stub"1
2
class="stub"3
2
]上是减函数,∴h(x)max=h(class="stub"1
2
)
=class="stub"3
4

∴只需k2≤class="stub"3
4
.又由g(x)定义域知k>0,∴0<k≤
3
2
,即k的范围为 (0,
3
2
).-----(13分)

更多内容推荐