已知正项等差数列{an}的前n项和为Sn,且满足,S7=56.(Ⅰ)求数列{an}的通项公式an;(Ⅱ)若数列{bn}满足b1=a1且bn+1-bn=an+1,求数列的前n项和Tn.-高三数学
解:(Ⅰ) ∵{an}是等差数列且a1+a5=a32,∴2a3=a32,又∵an>0∴a3=6∵∴a4=8∴d=a4-a3=2,∴an=a3+(n-3)d=2n.(Ⅱ)∵bn+1-bn=an+1且an=2n,∴bn+1-bn=2(n+1)当时,,当n=1时,b1=2满足上式,bn=n(n+1)∴ ∴Tn==.
题目简介
已知正项等差数列{an}的前n项和为Sn,且满足,S7=56.(Ⅰ)求数列{an}的通项公式an;(Ⅱ)若数列{bn}满足b1=a1且bn+1-bn=an+1,求数列的前n项和Tn.-高三数学
题目详情
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)若数列{bn}满足b1=a1且bn+1-bn=an+1,求数列
答案
解:(Ⅰ) ∵{an}是等差数列且a1+a5=
a32,∴2a3=
a32,
∴a4=8
时,![]()
,
![]()
![]()
.
又∵an>0∴a3=6
∵
∴d=a4-a3=2,∴an=a3+(n-3)d=2n.
(Ⅱ)∵bn+1-bn=an+1且an=2n,∴bn+1-bn=2(n+1)
当
当n=1时,b1=2满足上式,bn=n(n+1)
∴
∴Tn
=
=