设a>0且a≠1,则“函数f(x)=logax在(0,+∞)上为增函数”是“函数g(x)=x3-a在(0,+∞)上为减函数”的()A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不

题目简介

设a>0且a≠1,则“函数f(x)=logax在(0,+∞)上为增函数”是“函数g(x)=x3-a在(0,+∞)上为减函数”的()A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不

题目详情

设a>0且a≠1,则“函数f(x)=logax在(0,+∞)上为增函数”是“函数g(x)=x3-a在(0,+∞)上为减函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充分且必要条件D.既不充分也不必要条件
题型:单选题难度:偏易来源:不详

答案

设P=“函数f(x)=logax在(0,+∞)上为增函数”,
若P成立,可得实数a的范围是(1,+∞);
设Q=“函数g(x)=x3-a在(0,+∞)上为减函数”,
若Q成立,可得3-a<0,解之可得实数a的范围是(3,+∞)
∵由“a∈(3,+∞)”可以推出“a∈(1,+∞)”,反之不能推出
∴“a∈(3,+∞)”是“a∈(1,+∞)”的充分不必要条件,
而“a∈(1,+∞)”是“a∈(3,+∞)”的必要不充分条件,
综上所述,条件P是条件Q的必要不充分条件,
故选:B

更多内容推荐