已知数列{an}满足a1=4,且an+1,an,3成等差数列,(其中n∈N*).(1)求a1-3,a2-3,a3-3的值;(2)求证:数列{an-3}是等比数列;(3)求数列{an}的通项公式并求其前

题目简介

已知数列{an}满足a1=4,且an+1,an,3成等差数列,(其中n∈N*).(1)求a1-3,a2-3,a3-3的值;(2)求证:数列{an-3}是等比数列;(3)求数列{an}的通项公式并求其前

题目详情

已知数列{an}满足a1=4,且an+1,an,3成等差数列,(其中n∈N*).
(1)求a1-3,a2-3,a3-3的值;
(2)求证:数列{an-3}是等比数列;
(3)求数列{an}的通项公式并求其前n项的和.
题型:解答题难度:中档来源:不详

答案

(1)由题意可得2an=an+1+3,
故可得a2=5,a3=7,
故a1-3=1,a2-3=2,a3-3=4;
(2)由(1)可得2an=an+1+3,
可得2an-6=an+1-3,即2(an-3)=an+1-3,
故可得
an+1-3
an-3
=2,
故数列{an-3}是q=2为公比的等比数列;
(3)由(2)可知an-3=(a1-3)qn-1=2n-1,
∴an=2n-1+3,
∴Sn=(1+3)+(2+3)+(4+3)+…+(2n-1+3)
=3n+(1+2+4+…+2n-1)=3n+
1•(1-2n)
1-2
=3n+2n-1

更多内容推荐