已知f(x)=ax+a-x(a>0且a≠1)(Ⅰ)证明函数f(x)的图象关于y轴对称;(Ⅱ)判断f(x)在(0,+∞)上的单调性,并用定义加以证明;(Ⅲ)当x∈[1,2]时函数f(x)的最大值为52,

题目简介

已知f(x)=ax+a-x(a>0且a≠1)(Ⅰ)证明函数f(x)的图象关于y轴对称;(Ⅱ)判断f(x)在(0,+∞)上的单调性,并用定义加以证明;(Ⅲ)当x∈[1,2]时函数f(x)的最大值为52,

题目详情

已知f(x)=ax+a-x(a>0且a≠1)
(Ⅰ)证明函数f(x)的图象关于y轴对称;
(Ⅱ)判断f(x)在(0,+∞)上的单调性,并用定义加以证明;
(Ⅲ)当x∈[1,2]时函数f(x)的最大值为
5
2
,求此时a的值.
(Ⅳ)当x∈[-2,-1]时函数f(x)的最大值为
5
2
,求此时a的值.
题型:单选题难度:偏易来源:不详

答案

(Ⅰ)证明:∵x∈R,f(-x)=a-x+ax=ax+a-x=f(x)…(3分)
∴函数f(x)是偶函数,∴函数f(x)的图象关于y轴对称…(4分)
(Ⅱ)证明:设0<x1<x2,则f(x1)-f(x2)=ax1+a-x1-(ax2+a-x2)
(1)当a>1时,
由0<x1<x2,则x1+x2>0,则ax1>0ax2>0ax1ax2ax1+x2>1
∴f(x1)-f(x2)<0,∴f(x1)<f(x2);
(2)当0<a<1时,
由0<x1<x2,则x1+x2>0,则ax1>0ax2>0ax1ax20<ax1+x2<1
∴f(x1)-f(x2)<0,∴f(x1)<f(x2);
所以,对于任意a(a>0且a≠1),f(x)在(0,+∞)上都为增函数.
(Ⅲ)由(Ⅱ)知f(x)在(0,+∞)上为增函数,则当x∈[1,2]时,函数f(x)亦为增函数;
由于函数f(x)的最大值为class="stub"5
2
,则f(2)=class="stub"5
2

a2+class="stub"1
a2
=class="stub"5
2
,解得a=
2
,或a=
2
2

(Ⅳ)由(Ⅰ)(Ⅱ)证知f(x)是偶函数且在(0,+∞)上为增函数,则知f(x)在(-∞,0)上为减函数;
则当x∈[-2,-1]时,函数f(x)为减函数
由于函数f(x)的最大值为class="stub"5
2
,则f(-2)=class="stub"5
2

class="stub"1
a2
+a2=class="stub"5
2
,解得a=
2
,或a=
2
2

更多内容推荐