设函数f(x)=1x2-1,(1)求函数f(x)的定义域、值域;(2)判断函数f(x)的奇偶性;(3)指出函数f(x)的单调区间并就其中一种情况加以证明.-高一数学

题目简介

设函数f(x)=1x2-1,(1)求函数f(x)的定义域、值域;(2)判断函数f(x)的奇偶性;(3)指出函数f(x)的单调区间并就其中一种情况加以证明.-高一数学

题目详情

设函数f(x)=
1
x2-1

(1)求函数f(x)的定义域、值域;
(2)判断函数f(x)的奇偶性;
(3)指出函数f(x)的单调区间并就其中一种情况加以证明.
题型:解答题难度:中档来源:不详

答案

(1)∵f(x)=class="stub"1
x2-1

∴x2-1≠0,即x≠±1,即函数的定义域为{x|x≠±1}.
则f(x)≠0,即f(x)值域为{x|x≠0};
(2)∵函数的定义域为{x|x≠±1}.
∴定义域关于原点对称,
∵f(-x)=class="stub"1
x2-1
=f(x),
∴函数f(x)的是偶数;
(3)设t=x2-1,则y=class="stub"1
t

∵当x>1时,函数t=x2-1单调递增,此时y=class="stub"1
t
单调递减,∴此时函数f(x)单调递减,
当0<x<1时,函数t=x2-1单调递增,此时y=class="stub"1
t
单调递减,∴此时函数f(x)单调递减,
当x<-1时,函数t=x2-1单调递减,此时y=class="stub"1
t
单调递减,∴此时函数f(x)单调递增,
当-1<x≤0时,函数t=x2-1单调递减,此时y=class="stub"1
t
单调递减,∴此时函数f(x)单调递增,
综上函数的单调递增区间为(-∞,-1)和(-1,0],
递减区间为(1,+∞)和(0,1).

更多内容推荐