已知函数f(x)=ex-ax(e为自然对数的底数)(1)若f(x)≥1在x∈R上恒成立,求实数a的值;(2)若n∈N*,证明:(1n)n+(2n)n+…+(n-1n)n+(nn)n<ee-1-数学

题目简介

已知函数f(x)=ex-ax(e为自然对数的底数)(1)若f(x)≥1在x∈R上恒成立,求实数a的值;(2)若n∈N*,证明:(1n)n+(2n)n+…+(n-1n)n+(nn)n<ee-1-数学

题目详情

已知函数f(x)=ex-ax(e为自然对数的底数)
(1)若f(x)≥1在x∈R上恒成立,求实数a的值;
(2)若n∈N*,证明:(
1
n
)n+(
2
n
)n+…+(
n-1
n
)n+(
n
n
)n
e
e-1
题型:解答题难度:中档来源:不详

答案

(本小题主要考查函数的导数、最值、等比数列等基础知识,考查分析问题和解决问题的能力、以及创新意识)
(1)∵f(x)=ex-x,∴f'(x)=ex-1.令f'(x)=0,得x=0.
∴当x>0时,f'(x)>0,当x<0时,f'(x)<0.
∴函数f(x)=ex-x在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增.
∴当x=0时,f(x)有最小值1
(2)证明:由(1)知,对任意实数x均有ex-x≥1,即1+x≤ex.
x=-class="stub"k
n
(n∈N*,k=1,2,,n-1),则0<1-class="stub"k
n
e-class="stub"k
n

(1-class="stub"k
n
)n≤(e- class="stub"k
n
)n=e-k(k=1,2,,n-1)

(class="stub"n-k
n
)ne-k(k=1,2,,n-1)
.∵(class="stub"n
n
)n=1

(class="stub"1
n
)n+(class="stub"2
n
)n++(class="stub"n-1
n
)n+(class="stub"n
n
)ne-(n-1)+e-(n-2)++e-2+e-1+1

e-(n-1)+e-(n-2)++e-2+e-1+1=
1-e-n
1-e-1
<class="stub"1
1-e-1
=class="stub"e
e-1

(class="stub"1
n
)n+(class="stub"2
n
)n++(class="stub"n-1
n
)n+(class="stub"n
n
)n<class="stub"e
e-1

更多内容推荐