如图所示,在直线AB上有一点C,过点A作AE⊥AB,垂足为A,过点B作BF⊥AB,垂足为B,且AE=BC,BF=AC,连接EF.(1)求证:△AEC≌△BCF;(2)若AE=2,tan∠CFB=12,

题目简介

如图所示,在直线AB上有一点C,过点A作AE⊥AB,垂足为A,过点B作BF⊥AB,垂足为B,且AE=BC,BF=AC,连接EF.(1)求证:△AEC≌△BCF;(2)若AE=2,tan∠CFB=12,

题目详情

如图所示,在直线AB上有一点C,过点A作AE⊥AB,垂足为A,过点B作BF⊥AB,垂足为B,且AE=BC,BF=AC,连接EF.
(1)求证:△AEC≌△BCF;
(2)若AE=2,tan∠CFB=
1
2
,求EF的长.360优课网
题型:解答题难度:中档来源:不详

答案

(1)证明:∵EA⊥AB,BF⊥AB
∴∠EAC=∠FBC=90°…(1分)
在Rt△EAC与Rt△CBF中,
AE=BC
∠EAC=∠CBF
AC=BF
…(3分)
∴Rt△AEC≌Rt△BCF;

(2)∵△AEC≌△BCF,
∴AE=2=BC,∠CFB=∠ECA
tan∠ECA=class="stub"1
2

∴2AE=AC=4,
EC=CF=2
5
…(7分),
∵∠EAC+∠ECA=90°,∠AEC=∠FCB,
∴∠ECA+∠FCB=90°,
∴∠ECF=90°,
在Rt△ECF中,EC=CF=2
5

EF=2
10

更多内容推荐