已知函数f(x)=x2-2x,g(x)是R上的奇函数,且当x∈(-∞,0]时,g(x)+f(x)=x2(1)求函数g(x)在R上的解析式;(2)解不等式g(x)≥f(x)-|x-1|;(3)若h(x)

题目简介

已知函数f(x)=x2-2x,g(x)是R上的奇函数,且当x∈(-∞,0]时,g(x)+f(x)=x2(1)求函数g(x)在R上的解析式;(2)解不等式g(x)≥f(x)-|x-1|;(3)若h(x)

题目详情

已知函数f(x)=x2-2x,g(x)是R上的奇函数,且当x∈(-∞,0]时,g(x)+f(x)=x2
(1)求函数g(x)在R上的解析式;
(2)解不等式g(x)≥f(x)-|x-1|;
(3)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)设x∈[0,+∞),则-x∈(-∞,0]
∵当x∈(-∞,0]时,g(x)+f(x)=x2∴当x∈(-∞,0]时,g(x)=2x
∴g(-x)=-2x∵g(x)是R上的奇函数∴g(x)=-g(-x)=2x,x∈[0,+∞)
∴函数g(x)在R上的解析式,g(x)=2x
(2)由g(x)≥f(x)-|x-1|,可得|x-1|≥x2-4x∴x2-5x+1≤0,x2-3x-1≤0
5-
21
2
≤x≤
5+
21
2
3-
13
2
≤x≤
3+
13
2

因此,原不等式的解集为[
3-
13
2
5+
21
2
]

(3)h(x)=-λx2+(2λ+2)x+1
①λ=0时,h(x)=2x+1在[-1,1]上是增函数∴λ=0
②当λ≠0,对称轴方程为x=class="stub"λ+1
λ

当λ<0时,class="stub"λ+1
λ
≤-1
,解得-class="stub"1
2
≤λ<0

当λ>0时,class="stub"λ+1
λ
≥1
,解得λ>0
综上所述,-class="stub"1
2
≤λ

更多内容推荐