已知:函数f(x)=x2+2x+ax,x∈[1,+∞],(1)当a=-1时,判断并证明函数的单调性并求f(x)的最小值;(2)若对任意x∈[1,+∞],f(x)>0都成立,试求实数a的取值范围.-数学

题目简介

已知:函数f(x)=x2+2x+ax,x∈[1,+∞],(1)当a=-1时,判断并证明函数的单调性并求f(x)的最小值;(2)若对任意x∈[1,+∞],f(x)>0都成立,试求实数a的取值范围.-数学

题目详情

已知:函数f(x)=
x2+2x+a
x
,x∈[1,+∞],
(1)当a=-1时,判断并证明函数的单调性并求f(x)的最小值;
(2)若对任意x∈[1,+∞],f(x)>0都成立,试求实数a的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)当a=-1时f(x)=
x2+2x-1
x
=x-class="stub"1
x
+2
f′(x)=1+class="stub"1
x2
>0,x∈[1,+∞],所以f(x)在x∈[1,+∞]上是增函数,
所以x=1时f(x)取最小值,最小值为2    
(2)若对任意x∈[1,+∞]f(x)>0恒成立,则
x2+2x+a
x
>0对任意x∈[1,+∞]恒成立,所以x2+2x+a>0对任意x∈[1,+∞]恒成立,令g(x)=x2+2x+a,x∈[1,+∞],
因为g(x)=x2+2x+a在∈[1,+∞],上单调递增,
所以x=1时g(x)取最小值,最小值为3+a,
∵3+a>0,∴a>-3.

更多内容推荐