已知定义在R上的奇函数f(x)单调递增,若f(x2-2x+a)+f(2-ax)>0对x∈(1,+∞)恒成立,则实数a的取值范围为______.-数学

题目简介

已知定义在R上的奇函数f(x)单调递增,若f(x2-2x+a)+f(2-ax)>0对x∈(1,+∞)恒成立,则实数a的取值范围为______.-数学

题目详情

已知定义在R上的奇函数f(x)单调递增,若f(x2-2x+a)+f(2-ax)>0对x∈(1,+∞)恒成立,则实数a的取值范围为______.
题型:填空题难度:中档来源:不详

答案

∵函数f(x)是定义在R上的奇函数f(x)单调递增,
若f(x2-2x+a)+f(2-ax)>0在x∈(1,+∞)恒成立,
即f(x2-2x+a)>-f(2-ax)=f(ax-2)
即x2-2x+a>ax-2
即x2-2x+2>ax-a
即a<
x2-2x+2
x-1
=(x-1)+class="stub"1
x-1
在x∈(1,+∞)恒成立,
∵x∈(1,+∞)时,(x-1)+class="stub"1
x-1
≥2
故a<2
故实数a的取值范围为(-∞,2)
故答案为:(-∞,2)

更多内容推荐