已知各项均为正数的数列{an}满足:a1=3,an+1+ann+1=8an+1-an(n∈N*),设bn=1an,Sn=b12+b22+…+bn2.(I)求数列{an}的通项公式;(II)求证:Sn<

题目简介

已知各项均为正数的数列{an}满足:a1=3,an+1+ann+1=8an+1-an(n∈N*),设bn=1an,Sn=b12+b22+…+bn2.(I)求数列{an}的通项公式;(II)求证:Sn<

题目详情

已知各项均为正数的数列{an}满足:a1=3,
an+1+an
n+1
=
8
an+1-an
(n∈N*)
,设bn=
1
an
,Sn=b12+b22+…+bn2
(I)求数列{an}的通项公式;
(II)求证:Sn
1
4
题型:解答题难度:中档来源:重庆一模

答案

(I)∵
an+1+an
n+1
=class="stub"8
an+1-an

∴an+12-an2=8(n+1)
∴an2=(an2-an-12)+(an-12-an-22)+…+(a22-a12)+a12=8[n+(n-1)+…+2]+9=(2n+1)2
∴an=2n+1.…(5分)
(II)
b2n
=class="stub"1
a2n
=class="stub"1
(2n+1)2
<class="stub"1
4n(n+1)
=class="stub"1
4
(class="stub"1
n
-class="stub"1
n+1
)
Sn<class="stub"1
4
[(1-class="stub"1
2
)+(class="stub"1
2
-class="stub"1
3
)+…+(class="stub"1
n
-class="stub"1
n+1
)]=class="stub"1
4
(1-class="stub"1
n+1
)<class="stub"1
4
…(12分)

更多内容推荐