已知数列{an}的前n项和Sn=2n2+2n,数列{bn}的前n项和Tn=2-bn.(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)设cn=anbn4,求证数列{cn}的前n和Rn<4;(III)设c

题目简介

已知数列{an}的前n项和Sn=2n2+2n,数列{bn}的前n项和Tn=2-bn.(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)设cn=anbn4,求证数列{cn}的前n和Rn<4;(III)设c

题目详情

已知数列{an}的前n项和Sn=2n2+2n,数列{bn}的前n项和Tn=2-bn
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)设cn=
anbn
4
,求证数列{cn}的前n和Rn<4;
(III)设cn=an+(-1)nlog2bn,求数列{cn}的前2n和R2n
题型:解答题难度:中档来源:不详

答案

(I)∵数列{an}的前n项和Sn=2n2+2n,
∴a1=S1=2+2=4,
an=Sn-Sn-1=(2n2+2n)-[2(n-1)2+2(n-1)]=4n,
当n=1时,4n=4=a1,
∴an=4n.
∵数列{bn}的前n项和Tn=2-bn,
∴当n=1时,T1=b1=2-b1,解得b1=1.
当n>1时,Tn=2-bn,Tn-1=2-bn-1,
∴Tn-Tn-1=bn=bn-1-bn,∴2bn=bn-1,
bn
bn-1
=class="stub"1
2

∴数列{bn}是以首项为1,公比为class="stub"1
2
的等比数列,
bn=(class="stub"1
2
)n-1
,n∈N*.
(II)∵cn=
anbn
4
=n•(class="stub"1
2
)
n-1

∴数列{cn}的前n和:
Rn=c1+c2+c3+…+cn
=1•(class="stub"1
2
)0+2×(class="stub"1
2
)1+3×(class="stub"1
2
)2+…+(n-1)•(class="stub"1
2
)n-2+n•(class="stub"1
2
)n-1,①
class="stub"1
2
Rn =1•(class="stub"1
2
)1+2×(class="stub"1
2
)2+3×(class="stub"1
2
)3+…+(n-1)•(class="stub"1
2
)n-1+n•(class="stub"1
2
)n,②
①-②,得class="stub"1
2
R
n
=1+class="stub"1
2
+(class="stub"1
2
)2+(class="stub"1
2
)3+…+(class="stub"1
2
)n-1-n•(class="stub"1
2
)n
class="stub"1
2
R
n
=
1×[1-(class="stub"1
2
)
n
]
1-class="stub"1
2
-n•(class="stub"1
2
)n
=2-(class="stub"1
2
)
n+1
-n•(class="stub"1
2
)n,
Rn=4-2(n+2)(class="stub"1
2
)n<4

( III)∵cn=an+(-1)nlog2bn
=4n+(-1)nlog2(class="stub"1
2
)
n-1

=4n+(-1)n(1-n),
∴数列{cn}的前2n和
R2n=[4×1+(-1)1(1-1)]+[4×2+(-1)2(1-2)]+[4×3+(-1)3(1-3)]+…+[4×2n+(-1)2n(1-2n)]
=4(1+2+3+…+2n)+[0-1+2-3+…+(2n-2)-(2n-1)]
=4×
2n(1+2n)
2
-n
=8n2+3n.
∴R2n=8n2+3n.

更多内容推荐