等差数列{an}中,,前n项和为Sn,S2=4且S4=12,等比数列{bn}的公比为8,且b3=64.(Ⅰ)求an与bn;(Ⅱ)求1S1+1S2+…+1Sn.-数学

题目简介

等差数列{an}中,,前n项和为Sn,S2=4且S4=12,等比数列{bn}的公比为8,且b3=64.(Ⅰ)求an与bn;(Ⅱ)求1S1+1S2+…+1Sn.-数学

题目详情

等差数列{an}中,,前n项和为Sn,S2=4且S4=12,等比数列{bn}的公比为8,且b3=64.
(Ⅰ)求an与bn
(Ⅱ)求
1
S1
+
1
S2
+…+
1
Sn
题型:解答题难度:中档来源:不详

答案

设等差数列{an}的公差为d,等比数列{bn}的公比为q,
(Ⅰ)由题意得:
S2=2a1+d=4
S4=4a1+6d=12

解得a1=class="stub"3
2
,d=1
an=n+class="stub"1
2

q=8
b3=64
,解得b1=1∴bn=8n-1;
(Ⅱ)∵Sn=
n(n+2)
2

class="stub"1
Sn
=class="stub"1
n
-class="stub"1
n+2

class="stub"1
S1
+class="stub"1
S2
+…+class="stub"1
Sn
=(class="stub"1
1
-class="stub"1
3
)+(class="stub"1
2
-class="stub"1
4
)+(class="stub"1
3
-class="stub"1
5
)+…+(class="stub"1
n
-class="stub"1
n+2

=1+class="stub"1
2
-class="stub"1
n+1
-class="stub"1
n+2
=
3n2-13n
2(n+1)(n+2)

更多内容推荐