设函数f(x)=2x-cosx,{an}是公差为π8的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2-a1a3=______.-数学

题目简介

设函数f(x)=2x-cosx,{an}是公差为π8的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2-a1a3=______.-数学

题目详情

设函数f(x)=2x-cosx,{an}是公差为
π
8
的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2-a1a3=______.
题型:填空题难度:中档来源:不详

答案

∵f(x)=2x-cosx,
∴f(a1)+f(a2)+…+f(a5)=2(a1+a2+…+a5)-(cosa1+cosa2+…+cosa5),
∵{an}是公差为class="stub"π
8
的等差数列,
∴a1+a2+…+a5=5a3,由和差化积公式可得,
cosa1+cosa2+…+cosa5
=(cosa1+cosa5)+(cosa2+cosa4)+cosa3
=[cos(a3-class="stub"π
8
×2)+cos(a3+class="stub"π
8
×2)]+[cos(a3-class="stub"π
8
)+cos(a3+class="stub"π
8
)]+cosa3
=2cos
(a3-class="stub"π
4
)+(a3+class="stub"π
4
)
2
cos
(a3-class="stub"π
4
)-(a3+class="stub"π
4
)
2
+2cos
(a3-class="stub"π
8
)+(a3+class="stub"π
8
)
2
cos
(a3-class="stub"π
8
)-(a3+class="stub"π
8
)
2
+cosa3
=2cosa3•
2
2
+2cosa3•cos(-class="stub"π
8
)+cosa3
=cosa3(1+
2
+
2+
2

则cosa1+cosa2+…+cosa5的结果不含π,
又∵f(a1)+f(a2)+…+f(a5)=5π,
∴cosa3=0,故a3=class="stub"π
2

[f(a3)]2-a1a3=π2-(class="stub"π
2
-2•class="stub"π
8
•class="stub"π
2
=π2-
π2
8
=
7π2
8

故答案为:
7π2
8

更多内容推荐