等差数列{an}的各项均为正数,a1=1,前n项和为Sn.等比数列{bn}中,b1=1,且b2S2=6,b2+S3=8.(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)求1S1+1S2+…+1Sn.-

题目简介

等差数列{an}的各项均为正数,a1=1,前n项和为Sn.等比数列{bn}中,b1=1,且b2S2=6,b2+S3=8.(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)求1S1+1S2+…+1Sn.-

题目详情

等差数列{an}的各项均为正数,a1=1,前n项和为Sn.等比数列{bn}中,b1=1,且b2S2=6,b2+S3=8.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)求
1
S1
+
1
S2
+…+
1
Sn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)设等差数列{an}的公差为d,d>0,{bn}的等比为q
则an=1+(n-1)d,bn=qn-1
依题意有
q(2+d)=6
q+3+3d=8
,解得
d=1
q=2
d=-class="stub"4
3
q=9
(舍去)
故an=n,bn=2n-1
(Ⅱ)由(1)可得Sn=1+2+…+n=class="stub"1
2
n(n+1)

class="stub"1
sn
=2(class="stub"1
n
-class="stub"1
n+1
)

class="stub"1
S1
+class="stub"1
S2
+…+class="stub"1
Sn
=2[(1-class="stub"1
2
)+(class="stub"1
2
-class="stub"1
3
)+…+(class="stub"1
n
-class="stub"1
n+1
)]

=2(1-class="stub"1
n+1
)=class="stub"2n
n+1

更多内容推荐