已知数列{an}首项a1=1公差d>0,且其第2项、第5项、第14项分别是等比数列{bn}的第2,3,4项,(1)求{an}{bn}的通项公式.(2)设数列{cn}对任意自然数n均有c1b1+c2b2

题目简介

已知数列{an}首项a1=1公差d>0,且其第2项、第5项、第14项分别是等比数列{bn}的第2,3,4项,(1)求{an}{bn}的通项公式.(2)设数列{cn}对任意自然数n均有c1b1+c2b2

题目详情

已知数列{an}首项a1=1公差d>0,且其第2项、第5项、第14项分别是等比数列{bn}的第2,3,4项,
(1)求{an}{bn}的通项公式.
(2)设数列{cn}对任意自然数n均有
c1
b1
+
c2
b2
+
c3
b3
+…+
cn
bn
=an+1
成立求c1+c2+…+c2007的值.
题型:解答题难度:中档来源:不详

答案

(1)设等差数列第二,五,十四项分别是a1+d,a1+4d,a1+13d,
∵分别是等比数列{bn}的第2,3,4项
∴(a1+4d)2=(a1+d)(a1+13d),
解得d=2,a1=1,
所以an=2n-1,
bn=3n-1
(2)
c1
b1
+
c2
b2
+
c3
b3
++
cn-1
bn-1
=an
(n≥2)
又∵
c1
b1
+
c2
b2
+
c3
b3
+…+
cn
bn
=an+1

cn
bn
=an+1-an

cn=2•3n-1 (n≥2)
当n=1时,
c1
b1
=a2

所以c1=a2b1=3
c1+c2+…+c2007=32007.

更多内容推荐