已知点A(1,13)是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列an的前n项和为f(n)-c,数列bn(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=Sn+Sn-1(n≥2)

题目简介

已知点A(1,13)是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列an的前n项和为f(n)-c,数列bn(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=Sn+Sn-1(n≥2)

题目详情

已知点A(1,
1
3
)
是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列an的前n项和为f(n)-c,数列bn(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(1)求数列{an}与{bn}的通项公式.
(2)若数列{
1
bnbn+1
}
的前n项和为Tn,问满足Tn
1000
2011
的最小整数是多少?
(3)若Cn=-
2bn
a n
,求数列Cn的前n项和Pn
题型:解答题难度:中档来源:不详

答案

(1)∵点A(1,class="stub"1
3
)
是函数f(x)=ax(a>0且a≠1)的图象上一点f(1)=a=class="stub"1
3

∵等比数列an的前n项和为f(n)-c
∴当n≥2时,an=[f(n)-c]-[f(n-1)-c]=-class="stub"2
3n

∵{an}为等比数列
∴公比q=
an
an-1
=class="stub"1
3

a2=-class="stub"2
9
=a1q=[f(1)-c]•class="stub"1
3
=(class="stub"1
3
-c)•class="stub"1
3

∴c=1,a1=-class="stub"2
3
an=-class="stub"2
3n
(3分)
由题设可知数列bn(bn>0)的首项为b1=c=1Sn-Sn-1=
Sn
+
Sn-1
(n≥2)
(
Sn
-
Sn-1
)(
Sn
+
Sn-1
)=
Sn
+
Sn-1

Sn
-
Sn-1
=1

∴数列{
Sn
}
是首项为1,公差为1的等差数列.
Sn
=n,Sn=n2 bn=Sn-Sn-1=n2-(n-1)2=2n-1
当n=1时,b1=1,也满足bn=2n-1
数列{bn }的通项公式.bn=2n-1(6分)
(2)∵bn=2n-1
class="stub"1
bnbn+1
=class="stub"1
(2n-1)(2n+1)
=class="stub"1
2
(class="stub"1
2n-1
-class="stub"1
2n+1
)

Tn=class="stub"1
b1b2
+class="stub"1
b2b3
+class="stub"1
b3b4
++class="stub"1
bnbn+1
=class="stub"1
2
[(1-class="stub"1
3
)+(class="stub"1
3
-class="stub"1
5
)+(class="stub"1
2n-1
-class="stub"1
2n+1
)]=class="stub"n
2n+1

要使Tn>class="stub"1000
2011

class="stub"n
2n+1
>class="stub"1000
2011
,即n>90class="stub"10
11

∴满足Tn>class="stub"1000
2011
的最小整数为91(11分)
(3)∵an=-class="stub"2
3n
,bn=2n-1
Cn=-
2bn
a n
=(2n-1)•3nPn=1•3+3•32+5•33++(2n-1)•3n①
3Pn=1•32+3•33+5•34++(2n-1)•3n+1..②
①-②得:-2Pn=3+2(32+33+34+3n)-(2n-1)•3n+1=3+2•
32(1-3n-1)
1-3
-
(2n-1)•3n+1=(2-2n)•3n+1-6
∴Pn=3+(n-1)•3n+1.(16分)

更多内容推荐