已知等差数列{an}满足:a2=5,a4+a6=22,数列{bn}满足b1+2b2+…+2n-1bn=nan,设数列{bn}的前n项和为Sn.(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)求满足13

题目简介

已知等差数列{an}满足:a2=5,a4+a6=22,数列{bn}满足b1+2b2+…+2n-1bn=nan,设数列{bn}的前n项和为Sn.(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)求满足13

题目详情

已知等差数列{an}满足:a2=5,a4+a6=22,数列{bn}满足b1+2b2+…+2n-1bn=nan,设数列{bn}的前n项和为Sn
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求满足13<Sn<14的n的集合.
题型:解答题难度:中档来源:不详

答案

(I)∵a2=5,a4+a6=22,
∴a1+d=5,(a1+3d)+(a1+5d)=22,
解得:a1=3,d=2.
a n
=2n+1
…(2分)
b1+2b2+…+2n-1bn=nan
中令n=1得:b1=a1=3,
又b1+2b2+…+2nbn+1=(n+1)an+1,
∴2nbn+1=(n+1)an+1一nan.
∴2nbn+1=(n+1)(2n+3)-n(2n+1)=4n+3,
bn+1=class="stub"4n+3
2n

bn=class="stub"4n-1
2n-1
(n≥2)
,…(5分)
经检验,b1=3也符合上式,
所以数列{bn}的通项公式为bn=class="stub"4n-1
2n-1
…(6分)
(Ⅱ)Sn=3+7•class="stub"1
2
+…+(4n-1)•(class="stub"1
2
)n-1,
class="stub"1
2
Sn=3•class="stub"1
2
+7•(class="stub"1
2
)2+…+(4n一5)•(class="stub"1
2
)n-1+(4n一1)(class="stub"1
2
)n.…(8分)
两式相减得:class="stub"1
2
Sn=3+4[class="stub"1
2
+(class="stub"1
2
)2+…+(class="stub"1
2
)n-1]一(4n一1)(class="stub"1
2
)n,
class="stub"1
2
Sn=3+4•
class="stub"1
2
[1-(class="stub"1
2
)
n-1
]
1-class="stub"1
2
-(4n-1)(class="stub"1
2
)n

∴Sn=14-class="stub"4n+7
2n-1
.    …(10分)
∴∀n∈N*,S<14.
∵数列{bn}的各项为正,
∴Sn单调递增,
又计算得S5=14-class="stub"27
16
<13
S6=14-class="stub"31
32
>13

满足13<Sn<14的n的集合为{n|n≥6,n∈N}.

更多内容推荐