设数列{an}为等差数列,其前n项和为Sn,S2=8,S4=32,数列{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)设cn=anbn,求数

题目简介

设数列{an}为等差数列,其前n项和为Sn,S2=8,S4=32,数列{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)设cn=anbn,求数

题目详情

设数列{an}为等差数列,其前n项和为Sn,S2=8,S4=32,数列{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=
an
bn
,求数列{cn}的前n项和Tn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)数列{an}的公差为d,数列{bn}的公比为q,
由已知得,
2a1+d=8
4a1+6d=32

解得a1=2,d=4
故{an}的通项公式为an=4n-2…(3分)
因而有,b1qd=b1,d=4,
q=class="stub"1
4

bn=b1qn-1=2×class="stub"1
4n-1
=class="stub"2
4n-1

即{bn}的通项公式为bn=class="stub"2
4n-1
…(6分)
(Ⅱ)∵cn=
an
bn
=class="stub"4n-2
class="stub"2
4n-1
=(2n-1)•4n-1

∴Tn=c1+c2+…+cn=1+3×4+5×42+…+(2n-1)4n-1,
4Tn=1×4+3×42+5×43+…+(2n-3)4n-1+(2n-1)4n,…(8分)
两式相减,得3Tn=-1-2(4+42+43+…+4n-1)+(2n-1)4n
=class="stub"1
3
[(6n-5)4n+5]

所以,Tn=class="stub"1
9
[(6n-5)4n+5]
.    …(12分)

更多内容推荐